Rescue Therapy for Supratherapeutic Concentrations of Calcineurin Inhibitors Using Potent Cytochrome P450 Inducers
Abstract
:1. Background
2. Index Clinical Case
3. Results
3.1. Demographics of CNI Overdose and Intoxication in VigiBase™
3.2. Seriousness Criteria of CNI Overdose and Intoxication
3.3. Causality Assessments, Actions Taken and Outcomes of CNI Intoxication
3.4. Analysis of Case Reports
4. Discussion
4.1. Clinical Pharmacological Evaluation of the Index Case
4.2. Retrospective Analysis of CNI Intoxications from VigiBase™ Versus Previously Published Peer-Reviewed Clinical Cases
5. Methodology
5.1. Study Design
5.2. Extraction of Data from VigiBase™
5.3. Extraction of Case Reports
5.4. Statistical Analyses
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swiss Drug Information. Available online: www.swissmedicinfo.ch (accessed on 4 October 2023).
- Micromedex™. Available online: www.micromedexsolutions.com (accessed on 4 October 2023).
- UpToDate™. Available online: www.uptodate.com (accessed on 4 October 2023).
- Tribe, H.T. The discovery and development of cyclosporin. Mycologist 1998, 12, 20–22. [Google Scholar] [CrossRef]
- Borel, J.F.; Kis, Z.L. The discovery and development of cyclosporine (Sandimmune). Transpl. Proc. 1991, 23, 1867–1874. [Google Scholar]
- Kino, T.; Hatanaka, H.; Hashimoto, M.; Nishiyama, M.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J. Antibiot. 1987, 40, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Kino, T.; Hatanaka, H.; Miyata, S.; Inamura, N.; Nishiyama, M.; Yajima, T.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J. Antibiot. 1987, 40, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Farmer, J.D., Jr.; Lane, W.S.; Friedman, J.; Weissman, I.; Schreiber, S.L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991, 66, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Handschumacher, R.E.; Harding, M.W.; Rice, J.; Drugge, R.J.; Speicher, D.W. Cyclophilin: A specific cytosolic binding protein for cyclosporin A. Science 1984, 226, 544–547. [Google Scholar] [CrossRef]
- Braun, W.; Kallen, J.; Mikol, V.; Walkinshaw, M.D.; Wüthrich, K. Three-dimensional structure and actions of immunosuppressants and their immunophilins. FASEB J. 1995, 9, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Klee, C.B.; Bierer, B.E.; Burakoff, S.J. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proc. Natl. Acad. Sci. USA 1992, 89, 3686–3690. [Google Scholar] [CrossRef]
- Kung, L.; Halloran, P.F. Immunophilins may limit calcineurin inhibition by cyclosporine and tacrolimus at high drug concentrations. Transplantation 2000, 70, 327–335. [Google Scholar] [CrossRef]
- Snee, I.; Drobina, J.; Mazer-Amirshahi, M. Tacrolimus toxicity due to enzyme inhibition from ritonavir. Am. J. Emerg. Med. 2023, 69, e5–e218. [Google Scholar] [CrossRef]
- Rose, D.T.; Gandhi, S.M.; Bedard, R.A.; Mondy, K.E.; Chu, A.L.; Gamble, K.C.; Gee, A.T.; Kundra, M.A.; Williams, A.L.; Lee, B.K. Supratherapeutic Tacrolimus Concentrations With Nirmatrelvir/Ritonavir in Solid Organ Transplant Recipients Requiring Hospitalization: A Case Series Using Rifampin for Reversal. Open Forum. Infect Dis. 2022, 9, ofac238. [Google Scholar] [CrossRef]
- Hoppe, J.M.; Holderied, A.; Schönermarck, U.; Vielhauer, V.; Anders, H.J.; Fischereder, M. Drug-induced CYP induction as therapy for tacrolimus intoxication. Clin. Nephrol. Case Stud. 2022, 10, 42–46. [Google Scholar] [CrossRef]
- Cadley, S.M.; Sethi, A.; Knorr, J.P. CYP induction to reverse tacrolimus toxicity resulting from concomitant Paxlovid use. Transpl. Infect Dis. 2022, 24, e13982. [Google Scholar] [CrossRef]
- Sharma, A.; Wahby, K.A.; Inany, M.; Lee, S.J. Use of phenytoin for treatment of tacrolimus toxicity with superimposed sepsis. BMJ Case Rep. 2020, 13, e234839. [Google Scholar] [CrossRef]
- Patel, S.J.; Kuten, S.A.; Musick, W.L.; Gaber, A.O.; Monsour, H.P.; Knight, R.J. Combination Drug Products for HIV-A Word of Caution for the Transplant Clinician. Am. J. Transplant. 2016, 16, 2479–2482. [Google Scholar] [CrossRef]
- Nghiem, D.D. Tacrolimus Induced Organ Failure: Reversal by Activation of the Cytochrome P450-3a System. Uro 2021, 1, 222–227. [Google Scholar] [CrossRef]
- O’Connor, A.D.; Rusyniak, D.E.; Mowry, J. Acute tacrolimus toxicity in a non-transplant patient. Clin. Toxicol. 2008, 46, 838–840. [Google Scholar] [CrossRef] [PubMed]
- Karasu, Z.; Gurakar, A.; Carlson, J.; Pennington, S.; Kerwin, B.; Wright, H.; Nour, B.; Sebastian, A. Acute tacrolimus overdose and treatment with phenytoin in liver transplant recipients. J. Okla State Med. Assoc. 2001, 94, 121–123. [Google Scholar] [PubMed]
- Nghiem, D.D. Role of pharmacologic enhancement of p-450 in cyclosporine overdose. Transplantation 2002, 74, 1355–1356. [Google Scholar] [CrossRef] [PubMed]
- Ceschi, A.; Rauber-Lüthy, C.; Kupferschmidt, H.; Banner, N.R.; Ansari, M.; Krähenbühl, S.; Taegtmeyer, A.B. Acute calcineurin inhibitor overdose: Analysis of cases reported to a national poison center between 1995 and 2011. Am. J. Transpl. 2013, 13, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Arellano, F.; Monka, C.; Krupp, P.F. Acute cyclosporin overdose. A review of present clinical experience. Drug. Saf. 1991, 6, 266–276, Erratum in Drug. Saf. 1991, 6, 338. [Google Scholar] [CrossRef] [PubMed]
- Sein Anand, J.; Chodorowski, Z.; Kujawska, H. Acute suicidal intoxication with tacrolimus in a kidney transplant patient. Przegl. Lek. 2005, 62, 517–518. [Google Scholar] [PubMed]
- Bax, K.; Tijssen, J.; Rieder, M.J.; Filler, G. Rapid resolution of tacrolimus intoxication-induced AKI with a corticosteroid and phenytoin. Ann. Pharmacother. 2014, 48, 1525–1528. [Google Scholar] [CrossRef]
- Hochleitner, B.W.; Bösmüller, C.; Nehoda, H.; Frühwirt, M.; Simma, B.; Ellemunter, H.; Steurer, W.; Hochleitner, E.O.; Königsrainer, A.; Margreiter, R. Increased tacrolimus levels during diarrhea. Transpl. Int. 2001, 14, 230–233. [Google Scholar] [CrossRef]
- Kishino, S.; Takekuma, Y.; Sugawara, M.; Shimamura, T.; Furukawa, H.; Todo, S.; Miyazaki, K. Influence of continuous venovenous haemodiafiltration on the pharmacokinetics of tacrolimus in liver transplant recipients with small-for-size grafts. Clin. Transpl. 2003, 17, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Venkataramanan, R.; Ptachcinski, R.J.; Burckart, G.J.; Yang, S.L.; Starzl, T.E.; Van Theil, D.H. The clearance of cyclosporine by hemodialysis. J. Clin. Pharmacol. 1984, 24, 528–531. [Google Scholar] [CrossRef]
- Lemaire, M.; Tillement, J.P. Role of lipoproteins and erythrocytes in the in vitro binding and distribution of cyclosporin A in the blood. J. Pharm. Pharmacol. 1982, 34, 715–718. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, X.X.; Li, S.; Zhang, Q.; Guo, L.J.; Chen, W.; Liu, L.H. Supratherapeutic Tacrolimus Concentrations With Nirmatrelvir/Ritonavir in a Lung Transplant Patient: A Case Report Using Rifampin for Reversal. Front. Pharmacol. 2022, 14, 1285078. [Google Scholar] [CrossRef]
- Kwon, E.J.; Yun, G.A.; Park, S.; Kim, S.; Chae, D.W.; Park, H.S.; Lee, T.; Jeong, J.C. Treatment of acute tacrolimus toxicity with phenytoin after Paxlovid (nirmatrelvir/ritonavir) administration in a kidney transplant recipient. Kidney Res. Clin. Pract. 2022, 41, 768–770. [Google Scholar] [CrossRef]
- Shah, A.; Nasrullah, A.; Butt, M.A.; Young, M. Paxlovid with Caution: Novel Case of Paxlovid-Induced Tacrolimus Toxicity in a Cardiac Transplant Patient. Eur. J. Case Rep. Intern. Med. 2022, 9, 003528. [Google Scholar] [CrossRef]
- Meaney, C.J.; O’Connor, M.; McGowan, M.; Hamid, M.; Su, W. Treatment of prolonged tacrolimus toxicity using phenytoin in a haemodialysis patient. J. Clin. Pharm. Ther. 2019, 44, 640–643. [Google Scholar] [CrossRef]
- Jantz, A.S.; Patel, S.J.; Suki, W.N.; Knight, R.J.; Bhimaraj, A.; Gaber, A.O. Treatment of acute tacrolimus toxicity with phenytoin in solid organ transplant recipients. Case Rep. Transplant. 2013, 2013, 375263. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, G.E.; Rossique-Gonzalez, M.; Gelman, B.; Kato, T. Use of phenobarbital in the management of acute tacrolimus toxicity: A case report. Transplant. Proc. 2000, 32, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Quirós-Tejeira, R.E.; Chang, I.F.; Bristow, L.J.; Karpen, S.J.; Goss, J.A. Treatment of acute tacrolimus whole-blood elevation with phenobarbital in the pediatric liver transplant recipient. Pediatr. Transplant. 2005, 9, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Naylor, H.; Robichaud, J. Decreased tacrolimus levels after administration of rifampin to a patient with renal transplant. Can. J. Hosp. Pharm. 2013, 66, 388–392. [Google Scholar] [CrossRef]
- Jindal, R.M.; Pescovitz, M.D.; Cummings, O.W.; Book, B.; Lumeng, L.; Milgrom, M.L.; Leapman, S.B.; Filo, R.S. Persistence of cyclosporine after withdrawal of the drug in a patient with chronic liver transplant rejection. Role of the monoethylglycinexylidine test. Transplantation 1996, 61, 1657–1658. [Google Scholar] [CrossRef]
- Lucey, M.R.; Kolars, J.C.; Merion, R.M.; Campbell, D.A.; Aldrich, M.; Watkins, P.B. Cyclosporin toxicity at therapeutic blood levels and cytochrome P-450 IIIA. Lancet 1990, 335, 11–15. [Google Scholar] [CrossRef]
- Yeh, C.N.; Hsieh, C.H.; Chao-Ming, H.; Long-Bin, B.J. Acute overdoses of tacrolimus (FK 506). Dig. Dis. Sci. 1999, 44, 1650. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, H.; Ma, S.; Rui, J.Z.; Miao, L.Y. Population pharmacokinetics and pharmacogenetics of tacrolimus in healthy Chinese volunteers. Pharmacology 2011, 88, 288–294. [Google Scholar] [CrossRef]
- Hebert, M.F.; Park, J.M.; Chen, Y.L.; Akhtar, S.; Larson, A.M. Effects of St. John’s wort (Hypericum perforatum) on tacrolimus pharmacokinetics in healthy volunteers. J. Clin. Pharmacol. 2004, 44, 89–94. [Google Scholar] [CrossRef]
- Jusko, W.J.; Piekoszewski, W.; Klintmalm, G.B.; Shaefer, M.S.; Hebert, M.F.; Piergies, A.A.; Lee, C.C.; Schechter, P.; Mekki, Q.A. Pharmacokinetics of tacrolimus in liver transplant patients. Clin. Pharmacol. Ther. 1995, 57, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.; Cook, M.; Alak, A.M. In-vitro metabolic studies of tacrolimus using precision-cut rat and human liver slices. J. Pharm. Biomed. Anal. 1996, 15, 349–357. [Google Scholar] [CrossRef]
- Antignac, M.; Hulot, J.S.; Boleslawski, E.; Hannoun, L.; Touitou, Y.; Farinotti, R.; Lechat, P.; Urien, S. Population pharmacokinetics of tacrolimus in full liver transplant patients: Modelling of the post-operative clearance. Eur. J. Clin. Pharmacol. 2005, 61, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Oteo, I.; Lukas, J.C.; Leal, N.; Suarez, E.; Valdivieso, A.; Gastaca, M.; Ortiz de Urbina, J.; Calvo, R. Tacrolimus pharmacokinetics in the early post-liver transplantation period and clinical applicability via Bayesian prediction. Eur. J. Clin. Pharmacol. 2013, 69, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Gruber, S.A.; Hewitt, J.M.; Sorenson, A.L.; Barber, D.L.; Bowers, L.; Rynders, G.; Arrazola, L.; Matas, A.J.; Rosenberg, M.E.; Canafax, D.M. Pharmacokinetics of FK506 after intravenous and oral administration in patients awaiting renal transplantation. J. Clin. Pharmacol. 1994, 34, 859–864. [Google Scholar] [CrossRef] [PubMed]
- López-Montes, A.; Gallego, E.; López, E.; Pérez, J.; Lorenzo, I.; Llamas, F.; Serrano, A.; Andrés, E.; Illescas, L.; Gómez, C. Treatment of tuberculosis with rifabutin in a renal transplant recipient. Am. J. Kidney Dis. 2004, 44, e59–e63. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.; Latorre, A.; Manzanares, C.; Morales, E.; Herrero, J.C.; Dominguez-Gil, B.; Carreño, A.; Cubas, A.; Delgado, M.; Andres, A.; et al. Clinical management of tacrolimus drug interactions in renal transplant patients. Transpl. Proc. 1999, 31, 2252–2253. [Google Scholar] [CrossRef]
- Chenhsu, R.Y.; Loong, C.C.; Chou, M.H.; Lin, M.F.; Yang, W.C. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann. Pharmacother. 2000, 34, 27–31. [Google Scholar] [CrossRef]
- Mori, T.; Aisa, Y.; Kato, J.; Nakamura, Y.; Shimizu, T.; Okamoto, S. Overcoming the effect of rifampin on the tacrolimus metabolism by itraconazole administration in an allogeneic hematopoietic stem cell transplant recipient. Int. J. Hematol. 2010, 91, 553–554. [Google Scholar] [CrossRef]
- Niwa, T.; Shiraga, T.; Takagi, A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol. Pharm. Bull. 2005, 28, 1805–1808. [Google Scholar] [CrossRef]
- Lumlertgul, D.; Noppakun, K.; Rojanasthien, N.; Kanchanarattanakorn, K.; Jittikanont, S.; Manoyot, A.; Bunnachak, D.; Ophascharoensuk, V. Pharmacokinetic study of the combination of tacrolimus and fluconazole in renal transplant patients. J. Med. Assoc Thai. 2006, 89 (Suppl. S2), S73–S78. [Google Scholar]
- Osowski, C.L.; Dix, S.P.; Lin, L.S.; Mullins, R.E.; Geller, R.B.; Wingard, J.R. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. Transplantation 1996, 61, 1268–1272. [Google Scholar] [CrossRef]
- Kuan, W.J.; Châteauvert, N.; Leclerc, V.; Drolet, B. Tacrolimus Dose-Conversion Ratios Based on Switching of Formulations for Patients with Solid Organ Transplants. Can. J. Hosp. Pharm. 2021, 74, 317–326. [Google Scholar] [CrossRef]
- Marcelín-Jiménez, G.; García-González, A.; Angeles-Moreno, A.P.; Contreras-Zavala, L.; Rivera, L.; Morales, M. Development of an ultra-performance liquid chromatography technique coupled with mass spectrometry for the measurement of tacrolimus in micro-samples of whole blood, and its application on a pharmacokiinetic trial. Arzneimittelforschung 2007, 57, 659–664. [Google Scholar] [CrossRef]
- USZ Analysenauskunftssystem. Available online: https://vademecum.usz.ch/Analysis/?entryID=4962 (accessed on 9 October 2023).
- Hebert, M.F.; Fisher, R.M.; Marsh, C.L.; Dressler, D.; Bekersky, I. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J. Clin. Pharmacol. 1999, 39, 91–96. [Google Scholar] [CrossRef]
- Riva, N.; Schaiquevich, P.; Cáceres Guido, P.; Halac, E.; Dip, M.; Imventarza, O. Pharmacoepidemiology of tacrolimus in pediatric liver transplantation. Pediatr. Transplant. 2017, 21, e12982. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, I.; Oyama, S.; Inada, A.; Wakabayashi, T.; Iida, T.; Kambara, H.; Uchida, M.; Sano, Y.; Hosohata, K. Current Status of Adverse Event Profile of Cyclosporine in Kidney, Stem Cell, and Heart Transplantations Using the Japanese Pharmacovigilance Database. Cureus 2022, 14, e29383. [Google Scholar] [CrossRef] [PubMed]
- Amkreutz, J.; Koch, A.; Buendgens, L.; Muehlfeld, A.; Trautwein, C.; Eisert, A. Prevalence and nature of potential drug-drug interactions among kidney transplant patients in a German intensive care unit. Int. J. Clin. Pharm. 2017, 39, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Bril, F.; Castro, V.; Centurion, I.G.; Espinosa, J.; Keller, G.A.; Gonzalez, C.D.; Riera, M.C.; Saubidet, C.L.; Di Girolamo, G.; Pujol, G.S.; et al. A Systematic Approach to Assess the Burden of Drug Interactions in Adult Kidney Transplant Patients. Curr. Drug. Saf. 2016, 11, 156–163. [Google Scholar] [CrossRef]
- Gago-Sánchez, A.I.; Font, P.; Cárdenas, M.; Aumente, M.D.; Del Prado, J.R.; Calleja, M.Á. Real clinical impact of drug-drug interactions of immunosuppressants in transplant patients. Pharmacol. Res. Perspect. 2021, 9, e00892. [Google Scholar] [CrossRef] [PubMed]
- Formea, C.M.; Evans, C.G.; Karlix, J.L. Altered cytochrome p450 metabolism of calcineurin inhibitors: Case report and review of the literature. Pharmacotherapy 2005, 25, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, M. VigiBase, the WHO Global ICSR Database System: Basic Facts. Drug Inf. J. 2008, 42, 409–419. [Google Scholar] [CrossRef]
- VigiBase™. Available online: https://who-umc.org/vigibase/ (accessed on 4 October 2023).
- VigiLyze™. Available online: https://vigilyze.who-umc.org/ (accessed on 4 October 2023).
Medication and Dosage | Dose Interval * | Remarks |
---|---|---|
Acetyl salicylic acid (Aspirin Cardio®) 100 mg | 1-0-0-0 | |
Lactulose (Duphalac®) sirup 30 mL | 1-1-1-0 | |
Apixaban (Eliquis®) 5 mg | 1-0-1-0 | withheld on admission |
Tacrolimus (Prograf®) 1 mg per oral | 1-0-1-0 | 8:00/20:00 |
Rosuvastatin (Rosuvastatin Sandoz®) 5 mg | 1-0-0-0 | |
Deoxycholic acid (Ursofalk®) 500 mg | 1-0-0-0 | |
Vitamin K (Konakion®) 10 mg/mL 10 mg | 1-0-1-0 | |
Pantoprazole (Pantozol®) 40 mg | 1-0-0-0 | |
Piperacillin-tazobactam 2.25 g | 1-1-1-0 | 1:00/9:00/17:00 |
Vancomycin (Vancocin®) 1 g | 1-0-1-0 | 00:00/12:00 |
Medication and Dosage | Dose Interval * | Remarks |
---|---|---|
Acetyl salicylic acid (Aspirin Cardio®) 100 mg | 1-0-0-0 | |
Lactulose (Duphalac®) sirup 30 ml | 1-1-1-0 | |
Deoxycholic acid (Ursofalk®) 500 mg | 1-0-0-0 | |
Pantoprazole (Pantozol®) 40 mg | 1-0-0-0 | |
Vancomycin (Vancocin®) 1 g | 1-0-1-0 | 00:00/12:00 |
Sulfamethoxazole-Trimethoprim (Bactrim forte®) 860 mg | 1-0-0-0 | three times weekly |
Caspofungin (Cancidas®) 50 mg | 1-0-0-0 | |
Meropenem 1 g | 1-0-1-0 | |
Valganciclovir (Valcyte®) 450 mg | 1-0-0-0 | Every other day |
Heparin | Infusion over 24 h | According to Factor Xa |
Vitamin K (Konakion®) 10 mg/mL 10 mg | 1-0-0-0 | |
Cortisol (Solu-Cortef®) 100 mg | 1-1-0-0 | |
Piperacillin-tazobactam 4.5 g | 1-1-1-0 | Till day 6 |
Rosuvastatin (Rosuvastatin Sandoz®) 5 mg | 1-0-0-0 | Till day 6 |
Tacrolimus (Prograf®) 1 mg per oral | 1-0-1-0 | Till day 6 at 20:00 |
Tacrolimus (Prograf®) 0.072 mg intravenous | Infusion over 2.5 h | Started on day 7 at 07:40 |
Fluconazol (Diflucan®) 200 mg intravenous | Single shot on day 7 at 06:49 |
Days of Hospitalization | 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|
TAC blood trough levels LC-MS [µg/L] | 5.0 | - | 31.0 | 22.9 | 13.7 | 8.9 | 4.9 | 3.2 |
Dosage of TAC | p.o. 2 mg 1-0-1-0 | i.v. 0.072 mg 1-0-0-0 | i.v. 0.072 mg 1-0-0-0 | withheld | withheld | withheld | withheld | withheld |
Creatinine [62–106 µmol/L] | 99 | 104 | 185 | 274 | 236 | 179 | 149 | 228 |
eGFR (Creatinine) CKD-EPI 2009 | 71 | 67 | 33 | 21 | 25 | 35 | 43 | 26 |
ASAT [<50 U/L] | 19 | 69 | 1434 | 910 | 624 | 342 | 154 | 87 |
ALAT [<50 U/L] | 147 | 61 | 478 | 501 | 434 | 331 | 215 | 144 |
γ-GT [<60 U/L] | 220 | 124 | 88 | 88 | 78 | 78 | 76 | 97 |
AP [40–130 U/L] | 242 | 201 | 202 | 205 | 181 | 174 | 153 | 153 |
Bilirubin tot. [<21 µmol/L] | 50 | 74 | 92 | 61 | 41 | 28 | 20 | 18 |
INR | - | 1.3 | 1.6 | 1.2 | 1.1 | 1 | 1 | 1 |
Protein [60–80 g/L] | 48 | 47 | - | 51 | 51 | - | - | - |
Albumin [40–49 g/L] | 23 | 19 | 28 | 25 | 26 | 27 | 26 | 25 |
Vancomycin [15–20 mg/L] | 14 | - | 23.2 | 28.8 | 23.3 | 17.8 | 14.3 | 18.4 |
Hemoglobin 134–170 g/L | 76 | 82 | 99 | 90 | 73 | 73 | 68 | 73 |
Platelets 143–400 G/L | 62 | 97 | 92 | 63 | 39 | 42 | 47 | 51 |
Leucocytes 3.0–9.6 G/L | 6.02 | 11.12 | 11.13 | 18.08 | 11.77 | 11.87 | 8.19 | 6.86 |
Anti-Infective agents Prior to Administration of Fluconazole | Risk and Incidence of Hepatic Injury According to LiverTox |
---|---|
Vancomycin | 1–5% |
Piperacillin-tazobactam | 6–15% |
Sulfamethoxazole-Trimethoprim | 5–10% |
Meropenem | 1–6% |
Caspofungin | 2–15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duwor, S.; Enthofer, K.; Ganter, C.; Poudel, P.; Svarin, A.; Kullak-Ublick, G.A. Rescue Therapy for Supratherapeutic Concentrations of Calcineurin Inhibitors Using Potent Cytochrome P450 Inducers. Pharmacoepidemiology 2024, 3, 33-50. https://doi.org/10.3390/pharma3010002
Duwor S, Enthofer K, Ganter C, Poudel P, Svarin A, Kullak-Ublick GA. Rescue Therapy for Supratherapeutic Concentrations of Calcineurin Inhibitors Using Potent Cytochrome P450 Inducers. Pharmacoepidemiology. 2024; 3(1):33-50. https://doi.org/10.3390/pharma3010002
Chicago/Turabian StyleDuwor, Seth, Katharina Enthofer, Christoph Ganter, Prabin Poudel, Anna Svarin, and Gerd A. Kullak-Ublick. 2024. "Rescue Therapy for Supratherapeutic Concentrations of Calcineurin Inhibitors Using Potent Cytochrome P450 Inducers" Pharmacoepidemiology 3, no. 1: 33-50. https://doi.org/10.3390/pharma3010002
APA StyleDuwor, S., Enthofer, K., Ganter, C., Poudel, P., Svarin, A., & Kullak-Ublick, G. A. (2024). Rescue Therapy for Supratherapeutic Concentrations of Calcineurin Inhibitors Using Potent Cytochrome P450 Inducers. Pharmacoepidemiology, 3(1), 33-50. https://doi.org/10.3390/pharma3010002