Next Issue
Volume 5, June
Previous Issue
Volume 4, December
 
 

Zoonotic Dis., Volume 5, Issue 1 (March 2025) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 1700 KiB  
Article
Modeling the Transmission of ESBL and AmpC-Producing Escherichia coli in Denmark: A Compartmental and Source Attribution Approach
by Maja Lykke Brinch, Ana Sofia Ribeiro Duarte, Ofosuhene O. Apenteng and Tine Hald
Zoonotic Dis. 2025, 5(1), 7; https://doi.org/10.3390/zoonoticdis5010007 - 18 Mar 2025
Viewed by 355
Abstract
Extended-spectrum cephalosporin-resistant Escherichia coli (ESC-EC) poses a significant public health concern, with its presence increasingly detected in healthy humans and various animal species. This study explores the transmission dynamic of ESC-EC within the Danish population as well as the transmission impact of a [...] Read more.
Extended-spectrum cephalosporin-resistant Escherichia coli (ESC-EC) poses a significant public health concern, with its presence increasingly detected in healthy humans and various animal species. This study explores the transmission dynamic of ESC-EC within the Danish population as well as the transmission impact of a range of food and animal sources. We developed a compartmental model encompassing farmers, pet owners, and the general population. Additionally, we applied an established source attribution model to estimate the contributions to the transmission of different sources using Danish surveillance data on the distribution of resistance genes in E. coli. Our findings highlight the central role of human-to-human transmission while also showing the significant contributions of food and animal sources to the spread of ESC-EC in sporadic human infections. Imported food, pets, and livestock were estimated to contribute importantly to human infections. The results emphasize the complexity of ESC-EC transmission dynamics and the critical value of employing a One Health approach in modeling disease transmission and in the development of targeted intervention strategies. Full article
Show Figures

Figure 1

14 pages, 957 KiB  
Review
Marburg Virus Disease in Sub-Saharan Africa: A Review of Currently Available Comprehensive Genomic Data up to 2024
by Edson Kinimi
Zoonotic Dis. 2025, 5(1), 6; https://doi.org/10.3390/zoonoticdis5010006 - 7 Mar 2025
Viewed by 759
Abstract
Marburg virus (MARV) is one of the deadliest human zoonotic pathogens, historically traced back to Uganda, in East African-cave-dwelling Egyptian fruit bats (Rousettus aegyptiacus), the probable cradle of MARV. Since its first identification in Germany and Serbia in 1967 due to [...] Read more.
Marburg virus (MARV) is one of the deadliest human zoonotic pathogens, historically traced back to Uganda, in East African-cave-dwelling Egyptian fruit bats (Rousettus aegyptiacus), the probable cradle of MARV. Since its first identification in Germany and Serbia in 1967 due to laboratory contamination, MARV has caused 18 outbreaks in humans in Sub-Saharan Africa, with the latest in Tanzania in 2025 and 2023, Rwanda in 2024, and Equatorial Guinea in 2023. Efforts to control MARV through bat extermination in Sub-Saharan Africa have been ineffective, likely due to incomplete extermination and the recolonization of infected juvenile fruit bats. Over the past two decades, extensive molecular epidemiological research has generated over 70 complete MARV genomes, enabling detailed phylogenetic analysis, though bat-derived sequences are still rare. Phylogenetic analysis of Sub-Saharan African Marburgviruses from 1975 shows clustering with sequences from humans and bats, indicating that the virus reservoir species in these regions are not considerably distinct. This review aims to consolidate MARV comprehensive genomic data to provide a clearer picture of the current Marburg virus disease situation in Sub-Saharan Africa and, in turn, highlights the need for active genomic surveillance to identify hotspots and prevent future global outbreaks. Full article
Show Figures

Figure 1

18 pages, 956 KiB  
Review
Holistic Approaches to Zoonoses: Integrating Public Health, Policy, and One Health in a Dynamic Global Context
by Mohamed Mustaf Ahmed, Olalekan John Okesanya, Zhinya Kawa Othman, Adamu Muhammad Ibrahim, Olaniyi Abideen Adigun, Bonaventure Michael Ukoaka, Muhiadin Ismail Abdi and Don Eliseo Lucero-Prisno III
Zoonotic Dis. 2025, 5(1), 5; https://doi.org/10.3390/zoonoticdis5010005 - 6 Mar 2025
Viewed by 1173
Abstract
Zoonotic diseases pose a significant global health threat, driven by factors such as globalization, climate change, urbanization, antimicrobial resistance (AMR), and intensified human–animal interactions. The increasing interconnectedness of human, animal, and environmental health underscores the importance of the OH paradigm in addressing zoonotic [...] Read more.
Zoonotic diseases pose a significant global health threat, driven by factors such as globalization, climate change, urbanization, antimicrobial resistance (AMR), and intensified human–animal interactions. The increasing interconnectedness of human, animal, and environmental health underscores the importance of the OH paradigm in addressing zoonotic threats in a globalized world. This review explores the complex epidemiology of zoonotic diseases, the challenges associated with their management, and the necessity for cross-sector collaboration to enhance prevention and control efforts. Key public health strategies, including surveillance systems, infection control measures, and community education programs, play crucial roles in mitigating outbreaks. However, gaps in governance, resource allocation, and interdisciplinary cooperation hinder effective disease management, particularly in low- and middle-income countries (LMICs). To illustrate the effectiveness of the OH approach, this review highlights successful programs, such as the PREDICT project, Rwanda’s National One Health Program, the EcoHealth Alliance, and the Rabies Elimination Program in the Philippines. These initiatives demonstrate how integrating human, animal, and environmental health efforts can enhance early detection, improve outbreak responses, and reduce public health burdens. Strengthening global health governance, enhancing surveillance infrastructure, regulating antimicrobial use, and investing in research and technological innovations are essential steps toward mitigating zoonotic risks. Ultimately, a coordinated, multidisciplinary approach is vital for addressing the dynamic challenges posed by zoonotic diseases and ensuring global health security in an increasingly interconnected world. Full article
Show Figures

Figure 1

21 pages, 704 KiB  
Review
Salmonellosis in Cattle: Sources and Risk of Infection, Control, and Prevention
by Kingsley E. Bentum, Emmanuel Kuufire, Rejoice Nyarku, Viona Osei, Stuart Price, Dianna Bourassa, Temesgen Samuel, Charlene R. Jackson and Woubit Abebe
Zoonotic Dis. 2025, 5(1), 4; https://doi.org/10.3390/zoonoticdis5010004 - 12 Feb 2025
Viewed by 1251
Abstract
Salmonellosis in humans is a public health threat and cattle are important reservoirs for the pathogen. Cattle products such as ground beef have been linked to human salmonellosis outbreaks, and some disease investigations have been traced back to infected animal herds on farms [...] Read more.
Salmonellosis in humans is a public health threat and cattle are important reservoirs for the pathogen. Cattle products such as ground beef have been linked to human salmonellosis outbreaks, and some disease investigations have been traced back to infected animal herds on farms and animal markets as the origin of infection. It is now common to isolate Salmonella from many cattle operations as the pathogen once introduced onto a farm can establish an undesirable endemic condition among herds. It is, therefore, essential to adopt measures to mitigate or prevent the introduction and spread of zoonotic disease agents like Salmonella in animal populations. With this background, the potential sources and risks of Salmonella infection in cattle, the control of already established infection, and other preventative measures are discussed in this article. We conclude that a holistic approach involving all stakeholders in cattle production is needed to safeguard public health, eventually forestalling human salmonellosis from cattle sources. In achieving this, it will be essential to consider the farm as a critical control point in preventing the introduction of Salmonella into the food chain. Full article
Show Figures

Graphical abstract

19 pages, 1060 KiB  
Review
A Review of the Molecular Understanding of the Mpox Virus (MPXV): Genomics, Immune Evasion, and Therapeutic Targets
by Edgar Manuel Cambaza
Zoonotic Dis. 2025, 5(1), 3; https://doi.org/10.3390/zoonoticdis5010003 - 16 Jan 2025
Cited by 1 | Viewed by 2007
Abstract
The Mpox virus (MPXV), a zoonotic pathogen from the Orthopoxvirus genus, has emerged as a significant global public health concern, especially after the unprecedented outbreak in 2022. This review synthesizes the MPXV’s molecular features, focusing on its genomic structure, replication mechanisms, immune evasion [...] Read more.
The Mpox virus (MPXV), a zoonotic pathogen from the Orthopoxvirus genus, has emerged as a significant global public health concern, especially after the unprecedented outbreak in 2022. This review synthesizes the MPXV’s molecular features, focusing on its genomic structure, replication mechanisms, immune evasion strategies, and implications for diagnostics and therapeutics. The study examines the virus’s genomic organization utilizing recent peer-reviewed literature, highlighting essential genes like OPG027 and D1L, which contribute to host adaptation, increased transmissibility, and immune evasion. Advances in molecular diagnostics, including real-time PCR and genome sequencing, are reviewed, emphasizing their critical role in outbreak monitoring and control. However, challenges persist, such as diagnostic limitations in resource-constrained settings and the lack of targeted vaccines and antivirals. This review discusses new antiviral candidates, confirmed through computational and in vitro techniques, identifying thymidine kinase and VP39 as key therapeutic targets. Emphasizing the need for genomic surveillance to track adaptive evolution, results show that particular mutations, such as in the OPG027 and D1L genes, increase the transmissibility and immune evasion of the MPXV. These molecular revelations highlight the urgent necessity for better diagnostics catered towards addressing present constraints and developing focused treatments that reduce the effect of the virus. This study emphasizes how these results underscore the need for combined public health plans to handle the changing MPXV epidemiology properly. Full article
Show Figures

Figure 1

14 pages, 229 KiB  
Review
Overview of Singapore’s One Health Strategy
by Hao Yi Tan
Zoonotic Dis. 2025, 5(1), 2; https://doi.org/10.3390/zoonoticdis5010002 - 14 Jan 2025
Viewed by 1552
Abstract
The One Health approach integrates human, animal, and environmental health to address complex challenges like emerging zoonotic diseases and antimicrobial resistance (AMR). Singapore’s dense urban environment, biodiversity, and role as a global hub make it vulnerable to these health threats, necessitating a robust [...] Read more.
The One Health approach integrates human, animal, and environmental health to address complex challenges like emerging zoonotic diseases and antimicrobial resistance (AMR). Singapore’s dense urban environment, biodiversity, and role as a global hub make it vulnerable to these health threats, necessitating a robust and coordinated One Health framework. This paper reviews Singapore’s One Health strategy, focusing on governance, surveillance, cross-sector partnerships, and public health infrastructure. A structured literature review, including peer-reviewed articles and grey literature, identified key strengths and gaps. Strengths include interagency coordination through the One Health Coordinating Committee, advanced surveillance systems like CDLENS and SIDPIC, and key institutions such as the National Centre for Infectious Diseases (NCID) and the National Public Health Laboratory (NPHL). However, gaps remain in multi-sector engagement, data-sharing mechanisms, and public awareness of One Health principles. To address these challenges, this paper recommends enhancing multi-sector collaboration, strengthening data-sharing networks, and increasing public education on One Health. Investments in preventive medicine, cross-border capacity-building, and leveraging artificial intelligence for predictive analytics are essential for bolstering Singapore’s health security. By addressing these gaps, Singapore can enhance its preparedness and serve as a global leader in One Health implementation. Full article
5 pages, 180 KiB  
Editorial
Zoonotic Disease Threats: Are We Prepared?
by Stephen K. Wikel
Zoonotic Dis. 2025, 5(1), 1; https://doi.org/10.3390/zoonoticdis5010001 - 1 Jan 2025
Viewed by 1188
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused great damage not only in terms of morbidity and mortality, but also intense social, economic, institutional and political disruptions, and costs that upended and challenged assumptions about our preparedness to deal with such global infectious disease [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic caused great damage not only in terms of morbidity and mortality, but also intense social, economic, institutional and political disruptions, and costs that upended and challenged assumptions about our preparedness to deal with such global infectious disease threats [...] Full article
Previous Issue
Next Issue
Back to TopTop