Salmonellosis in Cattle: Sources and Risk of Infection, Control, and Prevention
Simple Summary
Abstract
1. Introduction
2. Common Risk Factors and Sources of Salmonella Infection in Cattle
2.1. Infected Newcomers and Animal Trading
2.2. Fomites
2.2.1. People, Contaminated Instruments, and Equipment
2.2.2. Farm Equipment and Vehicles
2.3. Feed
Isolation Source | Serotype Involved | Reference |
---|---|---|
Dry beef cattle feed | Agona Anatum Barranquilla Cerro Cubana Give Infantis Kentucky Lexington Liverpool Mbandaka Meleagridis Montevideo Muenster Orion var. 15+, 34+ (Thomasville) Senftenberg Soerenga Typhimurium var. O 5- (Copenhagen) | [61] |
Medicated beef cattle feed | Cerro Cubana Infantis Lexington var. O 15+ (Manila) Liverpool Mbandaka Montevideo Newport Tennessee Typhimurium var. O 5- (Copenhagen) | [61] |
Dairy cattle feed | 42:z4,z23 Agona Alachua Barranquilla Havana Kentucky Livingstone Mbandaka Meleagridis Rissen Senftenberg | [61] |
Cattle feed ingredients | Typhimurium ** Mbandaka Cerro Braenderup Meleagridis | [57] |
Feed mill | Menhaden | [62] |
Cattle feed | Infantis ** | [63] |
Animal feed ingredients | Senftenberg Enteritidis Gallinarum Saintpaul Lexington | [64] |
Animal feed | Mbadanka | [65] |
2.4. Non-Production Animals and Production Animals
2.4.1. Wildlife, Rodents, Birds, and Flies
2.4.2. Pets Animals, Herding Animals, and Stray Animals
2.4.3. Other Livestock Animals
Animal Type | Specie | Serovar | Comparative Methodology | Reference |
---|---|---|---|---|
Wildlife | Raccoons Crows | Braenderup, Dublin Montevideo, 4, [5], 12:i:- | PFGE | [94] |
Wildlife | Hedgehog | Muenster | PFGE | [95] |
Wildlife | Wild boar | Meleagridis, Anatum | PFGE | [96] |
Production Animal | Chicken | Enteritidis | ERIC-PCR | [97] |
Production Animal | Pig | Typhimurium | PFGE | [98] |
2.5. Herd Size
2.6. Communal Pastures and Grazing
2.7. Animal Waste Handling as Slurry and Manure
2.8. Abortions and Live Births
2.9. Cattle Shows
3. Prevention and Control
3.1. Biosecurity
3.2. Interventions Aimed at Farm Animals and Their Environment
3.3. Farm Workers and Other People
3.4. Wildlife and Flies
3.5. Animal Feed
3.6. Vehicles, Equipment, and Animal Movements
3.7. National Control Programs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burciaga, S.; Trachsel, J.M.; Sockett, D.; Aulik, N.; Monson, M.S.; Anderson, C.L.; Bearson, S.M.D. Genomic and Phenotypic Comparison of Two Variants of Multidrug-Resistant Salmonella Enterica Serovar Heidelberg Isolated during the 2015–2017 Multi-State Outbreak in Cattle. Front. Microbiol. 2023, 14, 1282832. [Google Scholar] [CrossRef]
- Kebede, A.; Kemal, J.; Alemayehu, H.; Habte Mariam, S. Isolation, Identification, and Antibiotic Susceptibility Testing of Salmonella from Slaughtered Bovines and Ovines in Addis Ababa Abattoir Enterprise, Ethiopia: A Cross-Sectional Study. Int. J. Bacteriol. 2016, 1, 3714785. [Google Scholar] [CrossRef]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, Food Safety and Food Handling Practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Dudley, E.; Kittana, H.; Thompson, A.C.; Scott, M.; Norman, K.; Valeris-Chacin, R. Genomic Profiling of Antimicrobial Resistance Genes in Clinical Salmonella Isolates from Cattle in the Texas Panhandle, USA. Antibiotics 2024, 13, 843. [Google Scholar] [CrossRef]
- Canning, M.; Birhane, M.G.; Dewey-Mattia, D.; Lawinger, H.; Cote, A.; Gieraltowski, L.; Schwensohn, C.; Tagg, K.A.; Francois Watkins, L.K.; Park Robyn, M.; et al. Salmonella Outbreaks Linked to Beef, United States, 2012–2019. J. Food Prot. 2023, 86, 100071. [Google Scholar] [CrossRef]
- Muller, B.; Cunha-Neto, A.; Castro, V.S.; Carvalho, R.C.T.; Teixeira, L.A.C.; dos Prazeres Rodrigues, D.; de Souza Figueiredo, E.E. Salmonella Schwarzengrund, Akuafo, and O:16 Isolated from Vacuum-Packaged Beef Produced in the State of Mato Grosso, Brazil. J. Infect. Dev. Ctries. 2021, 15, 1876–1882. [Google Scholar] [CrossRef]
- Lyu, N.; Feng, Y.; Pan, Y.; Huang, H.; Liu, Y.; Xue, C.; Zhu, B.; Hu, Y. Genomic Characterization of Salmonella Enterica Isolates From Retail Meat in Beijing, China. Front. Microbiol. 2021, 12, 636332. [Google Scholar] [CrossRef] [PubMed]
- Kebede, M.T.; Getu, A.A. Assessment of Bacteriological Quality and Safety of Raw Meat at Slaughterhouse and Butchers’ Shop (Retail Outlets) in Assosa Town, Beneshangul Gumuz Regional State, Western Ethiopia. BMC Microbiol. 2023, 23, 403. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Salazar, R.; Pulido-Villamarín, A.; Ángel-Rodríguez, G.L.; Zafra-Alba, C.A.; Oliver-Espinosa, O. Isolation and Identification of Salmonella spp. In Raw Milk from Dairy Herds in Colombia. Braz. J. Vet. Res. Anim. Sci. 2021, 58, e172805. [Google Scholar] [CrossRef]
- Wang, X.; Ling, Z.; Sun, N.; Liu, Y.; Huang, J.; Wang, L. Molecular Genetic Characteristics of Mcr-9-Harbouring Salmonella Enterica Serotype Typhimurium Isolated from Raw Milk. Int. J. Antimicrob. Agents 2021, 57, 106332. [Google Scholar] [CrossRef]
- Gebeyehu, A.; Taye, M.; Abebe, R. Isolation, Molecular Detection and Antimicrobial Susceptibility Profile of Salmonella from Raw Cow Milk Collected from Dairy Farms and Households in Southern Ethiopia. BMC Microbiol. 2022, 22, 84. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.N.; Van Doren, J.M.; Leonard, C.L.; Datta, A.R. Prevalence of Listeria Monocytogenes, Salmonella spp., Shiga Toxin-Producing Escherichia coli, and Campylobacter spp. in Raw Milk in the United States between 2000 and 2019: A Systematic Review and Meta-Analysis. J. Food Prot. 2023, 86, 100014. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, R.; Furtado, R.; Coelho, A.; Correia, C.B.; Suyarko, E.; Borges, V.; Gomes, J.P.; Pista, A.; Batista, R. Raw Milk Cheeses from Beira Baixa, Portugal—A Contributive Study for the Microbiological Hygiene and Safety Assessment. Braz. J. Microbiol. 2024, 55, 1759–1772. [Google Scholar] [CrossRef] [PubMed]
- Grace, D.; Wu, F.; Havelaar, A.H. MILK Symposium Review: Foodborne Diseases from Milk and Milk Products in Developing Countries—Review of Causes and Health and Economic Implications. J. Dairy Sci. 2020, 103, 9715–9729. [Google Scholar] [CrossRef]
- Salah, Z.; Canning, M.; Rickless, D.; Devine, C.; Buckman, R.; Payne, D.C.; Marshall, K.E. Comparing Individual and Community-Level Characteristics of People with Ground Beef-Associated Salmonellosis and Other Ground Beef Eaters: A Case-Control Analysis. J. Food Prot. 2024, 87, 100303. [Google Scholar] [CrossRef] [PubMed]
- Belk, A.D.; Arnold, A.N.; Sawyer, J.E.; Griffin, D.B.; Taylor, T.M.; Savell, J.W.; Gehring, K.B. Comparison of Salmonella Prevalence Rates in Bovine Lymph Nodes across Feeding Stages. J. Food Prot. 2018, 81, 549–553. [Google Scholar] [CrossRef]
- Jones, G.; Pihier, N.; Vanbockstael, C.; Le Hello, S.; Cadel Six, S.; Fournet, N.; Jourdan-Da Silva, N. Outbreak of Salmonella Enteritidis Linked to the Consumption of Frozen Beefburgers Received from a Food Bank and Originating from Poland: Northern France, December 2014 to April 2015. Eurosurveillance 2016, 21, 30363. [Google Scholar] [CrossRef]
- Freidl, G.; Schoss, S.; te Wierik, M.; Heck, M.; Tolsma, P.; Urbanus, A.; Slegers-Fitz-James, I.; Friesema, I. Tracing Back the Source of an Outbreak of Salmonella Typhimurium; National Outbreak Linked to the Consumption of Raw and Undercooked Beef Products, the Netherlands, October to December 2015. PLoS Curr. 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Nichols, M.; Gollarza, L.; Sockett, D.; Aulik, N.; Patton, E.; Francois Watkins, L.K.; Gambino-Shirley, K.J.; Folster, J.P.; Chen, J.C.; Tagg, K.A.; et al. Outbreak of Multidrug-Resistant Salmonella Heidelberg Infections Linked to Dairy Calf Exposure, United States, 2015-2018. Foodborne Pathog. Dis. 2022, 19, 199–208. [Google Scholar] [CrossRef]
- Xu, Y.; Tao, S.; Hinkle, N.; Harrison, M.; Chen, J. Salmonella, Including Antibiotic-Resistant Salmonella, from Flies Captured from Cattle Farms in Georgia, U.S.A. Sci. Total Environ. 2018, 616–617, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Marshall, K.E.H.; Tewell, M.; Tecle, S.; Leeper, M.; Sinatra, J.; Kissler, B.; Fung, A.; Brown, K.; Wagner, D.; Trees, E.; et al. Protracted Outbreak of Salmonella Newport Infections Linked to Ground Beef: Possible Role of Dairy Cows—21 States, 2016–2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 443–446. [Google Scholar] [CrossRef]
- Sarno, E.; Pezzutto, D.; Rossi, M.; Liebana, E.; Rizzi, V. A Review of Significant European Foodborne Outbreaks in the Last Decade. J. Food Prot. 2021, 84, 2059–2070. [Google Scholar] [CrossRef]
- Holschbach, C.L.; Peek, S.F. Salmonella in Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2017, 34, 133–154. [Google Scholar] [CrossRef]
- Velasquez-Munoz, A.; Castro-Vargas, R.; Cullens-Nobis, F.M.; Mani, R.; Abuelo, A. Review: Salmonella Dublin in Dairy Cattle. Front. Vet. Sci. 2024, 10, 1331767. [Google Scholar] [CrossRef] [PubMed]
- Nickodem, C.; Arnold, A.N.; Gehring, K.B.; Gill, J.J.; Richeson, J.T.; Samuelson, K.L.; Morgan Scott, H.; Smith, J.K.; Matthew Taylor, T.; Vinasco, J.; et al. A Longitudinal Study on the Dynamics of Salmonella Enterica Prevalence and Serovar Composition in Beef Cattle Feces and Lymph Nodes and Potential Contributing Sources from the Feedlot Environment. Appl. Environ. Microbiol. 2023, 89, e00033-23. [Google Scholar] [CrossRef] [PubMed]
- Jones, F.T. A Review of Practical Salmonella Control Measures in Animal Feed. J. Appl. Poult. Res. 2011, 20, 102–113. [Google Scholar] [CrossRef]
- Arnold, A.N.; Sawyer, J.E.; Gehring, K.B. Longitudinal Evaluation of Salmonella in Environmental Components and Peripheral Lymph Nodes of Fed Cattle From Weaning to Finish in Three Distinct Feeding Locations. J. Food Prot. 2023, 86, 100062. [Google Scholar] [CrossRef]
- Parolini, F.; Ventura, G.; Rosignoli, C.; Rota Nodari, S.; D’incau, M.; Marocchi, L.; Santucci, G.; Boldini, M.; Gradassi, M. Detection and Phenotypic Antimicrobial Susceptibility of Salmonella Enterica Serotypes in Dairy Cattle Farms in the Po Valley, Northern Italy. Animals 2024, 14, 2043. [Google Scholar] [CrossRef]
- Gull, T. Bacterial Causes of Intestinal Disease in Dairy Calves: Acceptable Control Measures. Vet. Clin. N. Am.-Food Anim. Pract. 2022, 38, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, L. Prevention and Control of Salmonella in Dairy Cattle. WCDS Adv. Dairy Technol. 2023, 34, 117–119. [Google Scholar]
- Anderson, B.D.; Barnes, A.N.; Umar, S.; Guo, X.; Thongthum, T.; Gray, G.C. Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. In Zoonoses: Infections Affecting Humans and Animals; Springer: Cham, Switzerland, 2023; pp. 1–63. ISBN 978-3-030-85877-3. [Google Scholar]
- Kabagambe, E.K.; Wells, S.J.; Garber, L.P.; Salman, M.D.; Wagner, B.; Fedorka-Cray, P.J. Risk Factors for Fecal Shedding of Salmonella in 91 US Dairy Herds in 1996. Prev. Vet. Med. 2000, 43, 177–194. [Google Scholar] [CrossRef] [PubMed]
- USDA. Beef 2017: Beef Cow-Calf Management Practices in the United States. 2017. Available online: https://www.aphis.usda.gov/sites/default/files/beef2017_dr_parti.pdf (accessed on 11 August 2024).
- Gutema, F.D.; Agga, G.E.; Abdi, R.D.; De Zutter, L.; Duchateau, L.; Gabriël, S. Prevalence and Serotype Diversity of Salmonella in Apparently Healthy Cattle: Systematic Review and Meta-Analysis of Published Studies, 2000–2017. Front. Vet. Sci. 2019, 6, 102. [Google Scholar] [CrossRef]
- Nielsen, L.R.; Dohoo, I. Time-to-Event Analysis of Predictors for Recovery from Salmonella Dublin Infection in Danish Dairy Herds between 2002 and 2012. Prev. Vet. Med. 2013, 110, 370–378. [Google Scholar] [CrossRef]
- Hoelzer, K.; Switt, A.I.M.; Wiedmann, M. Animal Contact as a Source of Human Non-Typhoidal Salmonellosis. Vet. Res. 2011, 42, 34. [Google Scholar] [CrossRef] [PubMed]
- McGuirk, S.M.; Peek, S. Salmonellosis in Cattle: A Review. In Proceedings of the American Association of Bovine Practitioners 36th Annual Conference, Columbus, OH, USA, 18–20 September 2003. [Google Scholar]
- Vanselow, B.A.; Hum, S.; Hornitzky, M.A.; Eamens, G.J.; Quinn, K. Salmonella Typhimurium Persistence in a Hunter Valley Dairy Herd. Aust. Vet. J. 2007, 85, 446–450. [Google Scholar] [CrossRef]
- Nielsen, L.R.; Dohoo, I. Culling Decisions of Dairy Farmers during a 3-Year Salmonella Control Study. Prev. Vet. Med. 2011, 100, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.R.; van den Borne, B.; van Schaik, G. Salmonella Dublin Infection in Young Dairy Calves: Transmission Parameters Estimated from Field Data and an SIR-Model. Prev. Vet. Med. 2007, 79, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Wray, C.; Todd, N.; Mclaren, I.; Beedell, Y.; Rowe, B. The Epidemiology of Salmonella Infection of Calves: The Role of Dealers. Epidemiol. Infect. 1990, 105, 295–305. [Google Scholar] [CrossRef]
- Kassaye, D.; Kassa, T.; Sebhat, B. Isolation of Nontyphoidal Salmonella in Cattle, Sheep and Goats among Three Different Agro-Ecologies of Eastern Hararghe, Ethiopia. Int. J. Microbiol. Res. 2017, 8, 9–18. [Google Scholar]
- Koeppel, L.; Siems, T.; Fischer, M.; Lentz, H.H.K. Automatic Classification of Farms and Traders in the Pig Production Chain. Prev. Vet. Med. 2018, 150, 86–92. [Google Scholar] [CrossRef]
- Langvad, B.; Skov, M.N.; Rattenborg, E.; Olsen, J.E.; Baggesen, D.L. Transmission Routes of Salmonella Typhimurium DT 104 between 14 Cattle and Pig Herds in Denmark Demonstrated by Molecular Fingerprinting. J. Appl. Microbiol. 2006, 101, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.L.; Kemp, R.; Christley, R.M. Direct and Indirect Contacts between Cattle Farms in North-West England. Prev. Vet. Med. 2008, 84, 242–260. [Google Scholar] [CrossRef]
- Mweu, E.; English, M. Typhoid Fever in Children in Africa. Trop. Med. Int. Health 2008, 13, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Sellman, S.; Beck-Johnson, L.M.; Hallman, C.; Miller, R.S.; Bonner, K.A.O.; Portacci, K.; Webb, C.T.; Lindström, T. Modeling U.S. Cattle Movements until the Cows Come Home: Who Ships to Whom and How Many? Comput. Electron. Agric. 2022, 203, 107483. [Google Scholar] [CrossRef]
- Messenger, A.M.; Barnes, A.N.; Gray, G.C. Reverse Zoonotic Disease Transmission (Zooanthroponosis): A Systematic Review of Seldom-Documented Human Biological Threats to Animals. PLoS ONE 2014, 9, e89055. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.H.; Price, J.T. The Significant but Understudied Impact of Pathogen Transmission from Humans to Animals. Mt. Sinai J. Med. 2009, 76, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.D.; Nielsen, L.R.; Toft, N. Bayesian Estimation of True Between-Herd and within-Herd Prevalence of Salmonella in Danish Veal Calves. Prev. Vet. Med. 2011, 100, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Karodia, A.B.; Shaik, T.; Qekwana, D.N. Occurrence of Salmonella Spp. in Animal Patients and the Hospital Environment at a Veterinary Academic Hospital in South Africa. Vet. World 2024, 17, 922–932. [Google Scholar] [CrossRef]
- Adzitey, F.; Bukari, R.; Ayamdoh, Y.I. Surveillance of Bacterial Contamination of Fomites in Tamale Veterinary Clinic with Special Focus on Antimicrobial Resistance of Escherichia coli and Staphylococcus aureus. Ghana. J. Anim. Sci. 2019, 10, 132–140. [Google Scholar]
- Nyokabi, N.S.; Wood, J.L.N.; Gemechu, G.; Berg, S.; Mihret, A.; Lindahl, J.F.; Moore, H.L. The Role of Syndromic Knowledge in Ethiopian Veterinarians’ Treatment of Cattle. Front. Vet. Sci. 2024, 11, 1364963. [Google Scholar] [CrossRef] [PubMed]
- Nyokabi, N.S.; Phelan, L.; Lindahl, J.F.; Berg, S.; Muunda, E.; Mihret, A.; Wood, J.L.N.; Moore, H.L. Exploring Veterinary Students’ Awareness and Perception of Zoonoses Risks, Infection Control Practices, and Biosecurity Measures in Ethiopia. Front. Vet. Sci. 2024, 11, 1385849. [Google Scholar] [CrossRef] [PubMed]
- Locke, S.R.; Pempek, J.A.; Meyer, R.; Portillo-Gonzalez, R.; Sockett, D.; Aulik, N.; Habing, G. Prevalence and Sources of Salmonella Lymph Node Infection in Special-Fed Veal Calves. J. Food Prot. 2022, 85, 906–917. [Google Scholar] [CrossRef]
- Swedish Veterinary Agency. Salmonella in Feed. Available online: https://www.sva.se/en/what-we-do/feed-safety/Salmonella-in-feed/ (accessed on 11 August 2024).
- Davis, M.A.; Hancock, D.D.; Rice, D.H.; Call, D.R.; DiGiacomo, R.; Samadpour, M.; Besser, T.E. Feedstuffs as a Vehicle of Cattle Exposure to Escherichia coli O157:H7 and Salmonella enterica. Vet. Microbiol. 2003, 95, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Hald, T.; Wingstrand, A.; Pires, S.M.; Vieira, A.; Domingues, A.R.; Lundsby, K.; Andersen, V.D. Assessment of the Human-Health Impact of Salmonella in Animal Feed. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/51295782/Assessment_of_the_human_health_impact.pdf (accessed on 11 August 2024).
- Parker, E.M.; Parker, A.J.; Short, G.; O’Connor, A.M.; Wittum, T.E. Salmonella Detection in Commercially Prepared Livestock Feed and the Raw Ingredients and Equipment Used to Manufacture the Feed: A Systematic Review and Meta-Analysis. Prev. Vet. Med. 2022, 198, 105546. [Google Scholar] [CrossRef]
- Davies, R.H.; Wray, C. Distribution of Salmonella Contamination in Ten Animal Feedmills. Vet. Microbiol. 1997, 57, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.C.; Poole, T.L.; Runyon, M.; Hume, M.; Herrman, T.J. Prevalence of Nontyphoidal Salmonella and Salmonella Strains with Conjugative Antimicrobial-Resistant Serovars Contaminating Animal Feed in Texas. J. Food Prot. 2016, 79, 194–204. [Google Scholar] [CrossRef]
- Anderson, R.J.; Walker, R.L.; Hird, D.W.; Blanchard, P.C. Case-Control Study of an Outbreak of Clinical Disease Attributable to Salmonella Menhaden Infection in Eight Dairy Herds. J. Am. Vet. Med. Assoc. 1997, 210, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, N.; Heinikainen, S.; Toivonen, A.M.; Pelkonen, S. Discrimination between Endemic and Feedborne Salmonella Infantis Infection in Cattle by Molecular Typing. Epidemiol. Infect. 1999, 122, 497–504. [Google Scholar] [CrossRef]
- Pangloli, P.; Dje, Y.; Ahmed, O.; Doane, C.A.; Oliver, S.P.; Draughon, F.A. Seasonal Incidence and Molecular Characterization of Salmonella from Dairy Cows, Calves, and Farm Environment. Foodborne Pathog. Dis. 2008, 5, 87–96. [Google Scholar] [CrossRef]
- Jones, P.W.; Collins, P.; Brown, G.T.H.; Aitken, M. Transmission of Salmonella mbandaka to Cattle from Contaminated Feed. J. Hyg. 1982, 88, 255–263. [Google Scholar] [CrossRef]
- Verkuijl, C.; Strambo, C.; Hocquet, R.; Butterfield, R.; Achakulwisut, P.; Boyland, M.; Araújo, J.A.V.; Bakhtaoui, I.; Smit, J.; Lima, M.B.; et al. A Just Transition in Animal Agriculture Is Necessary for More Effective and Equitable One Health Outcomes. CABI One Health 2023. [Google Scholar] [CrossRef]
- Windsor, P.A. Progress With Livestock Welfare in Extensive Production Systems: Lessons from Australia. Front. Vet. Sci. 2021, 8, 674482. [Google Scholar] [CrossRef]
- Vidu, L.; Enea, D.N. Extensive Farming Systems. In Animal Husbandry–Beliefs, Facts and Reality [Working Title]; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Temple, D.; Manteca, X. Animal Welfare in Extensive Production Systems Is Still an Area of Concern. Front. Sustain. Food Syst. 2020, 4, 545902. [Google Scholar] [CrossRef]
- Manzoor, S.; Syed, Z.; Abubabakar, M. Global Perspectives of Intensive Animal Farming and Its Applications. In Intensive Animal Farming–A Cost-Effective Tactic; IntechOpen: London, UK, 2023; ISBN 978-1-80356-102-8. [Google Scholar] [CrossRef]
- Vidal-González, P.; Bueso-Rodenas, J. Extensive vs. Intensive Farming|YaleGlobal. Available online: https://archive-yaleglobal.yale.edu/content/extensive-vs-intensive-farming (accessed on 6 November 2024).
- Meng, X.J.; Lindsay, D.S. Wild Boars as Sources for Infectious Diseases in Livestock and Humans. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2697–2707. [Google Scholar] [CrossRef]
- Wacheck, S.; Fredriksson-Ahomaa, M.; König, M.; Stolle, A.; Stephan, R. Wild Boars as an Important Reservoir for Foodborne Pathogens. Foodborne Pathog. Dis. 2010, 7, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Boqvist, S.; Vågsholm, I. Risk Factors for Hazard of Release from Salmonella-Control Restriction on Swedish Cattle Farms from 1993 to 2002. Prev. Vet. Med. 2005, 71, 35–44. [Google Scholar] [CrossRef]
- Fossler, C.P.; Wells, S.J.; Kaneene, J.B.; Ruegg, P.L.; Warnick, L.D.; Bender, J.B.; Eberly, L.E.; Godden, S.M.; Halbert, L.W. Herd-Level Factors Associated with Isolation of Salmonella in a Multi-State Study of Conventional and Organic Dairy Farms: I. Salmonella Shedding in Cows. Prev. Vet. Med. 2005, 70, 257–277. [Google Scholar] [CrossRef] [PubMed]
- Koohmaraie, M.; Scanga, J.A.; De La Zerda, M.J.; Koohmaraie, B.; Tapay, L.; Beskhlebnaya, V.; Mai, T.; Greeson, K.; Samadpour, M. Tracking the Sources of Salmonella in Ground Beef Produced from Nonfed Cattle. J. Food Prot. 2012, 75, 1464–1468. [Google Scholar] [CrossRef]
- Anggita, M.; Herawati, O.; Artanto, S. Molecular Screening of Salmonella sp. from Fecal Sample of Sparrows (Passer domesticus) in Yogyakarta, Indonesia. BIO Web Conf. 2021, 33, 07003. [Google Scholar] [CrossRef]
- Vieira-Pinto, M.; Morais, L.; Caleja, C.; Themudo, P.; Torres, C.; Igrejas, G.; Poeta, P.; Martins, C. Salmonella Sp. in Game (Sus scrofa and Oryctolagus cuniculus). Foodborne Pathog. Dis. 2011, 8, 739–740. [Google Scholar] [CrossRef] [PubMed]
- Warnick, L.D.; Crofton, L.M.; Pelzer, K.D.; Hawkins, M.J. Risk Factors for Clinical Salmonellosis in Virginia, USA Cattle Herds. Prev. Vet. Med. 2001, 49, 259–275. [Google Scholar] [CrossRef] [PubMed]
- USDA-Food and Drug Administration. Get the Facts about Salmonella|FDA. Available online: https://www.fda.gov/animal-veterinary/animal-health-literacy/get-facts-about-salmonella (accessed on 10 August 2024).
- Brown, T.R.; Edrington, T.S.; Loneragan, G.H.; Hanson, D.L.; Malin, K.; Ison, J.J.; Nisbet, D.J. Investigation into Possible Differences in Salmonella Prevalence in the Peripheral Lymph Nodes of Cattle Derived from Distinct Production Systems and of Different Breed Types. J. Food Prot. 2015, 78, 2081–2084. [Google Scholar] [CrossRef] [PubMed]
- Viegas, F.M.; Ramos, C.P.; Xavier, R.G.C.; Lopes, E.O.; Junior, C.A.O.; Bagno, R.M.; Diniz, A.N.; Lobato, F.C.F.; Silva, R.O.S. Fecal Shedding of Salmonella Spp., Clostridium Perfringens, and Clostridioides Difficile in Dogs Fed Raw Meat-Based Diets in Brazil and Their Owners’ Motivation. PLoS ONE 2020, 15, e0231275. [Google Scholar] [CrossRef]
- Usmael, B.; Abraha, B.; Alemu, S.; Mummed, B.; Hiko, A.; Abdurehman, A. Isolation, Antimicrobial Susceptibility Patterns, and Risk Factors Assessment of Non-Typhoidal Salmonella from Apparently Healthy and Diarrheic Dogs. BMC Vet. Res. 2022, 18, 37. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, F.; Magarotto, J.; Serraino, A.; Piva, S. Highly Suspected Cases of Salmonellosis in Two Cats Fed with a Commercial Raw Meat-Based Diet: Health Risks to Animals and Zoonotic Implications. BMC Vet. Res. 2017, 13, 224. [Google Scholar] [CrossRef] [PubMed]
- Reimschuessel, R.; Grabenstein, M.; Guag, J.; Nemser, S.M.; Song, K.; Qiu, J.; Clothier, K.A.; Byrne, B.A.; Marks, S.L.; Cadmus, K.; et al. Multilaboratory Survey to Evaluate Salmonella Prevalence in Diarrheic and Nondiarrheic Dogs and Cats in the United States between 2012 and 2014. J. Clin. Microbiol. 2017, 55, 1350–1368. [Google Scholar] [CrossRef]
- Skov, M.N.; Madsen, J.J.; Rahbek, C.; Lodal, J.; Jespersen, J.B.; Jørgensen, J.C.; Dietz, H.H.; Chriél, M.; Baggesen, D.L. Transmission of Salmonella between Wildlife and Meat-Production Animals in Denmark. J. Appl. Microbiol. 2008, 105, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- Herding. Available online: https://education.nationalgeographic.org/resource/herding/ (accessed on 19 January 2025).
- Canine Co-Workers: Herding Dogs from around the World. Available online: https://www.lamlac.co.uk/latest/view,canine-coworkers-herding-dogs-from-around-the-world_120.htm (accessed on 19 January 2025).
- Klose, C.; Scuda, N.; Ziegler, T.; Eisenberger, D.; Hanczaruk, M.; Riehm, J.M. Whole-Genome Investigation of Salmonella Dublin Considering Mountain Pastures as Reservoirs in Southern Bavaria, Germany. Microorganisms 2022, 10, 885. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Sharma, R.; Aulakh, R.S.; Singh, B.B. Prevalence of Brucella Species in Stray Cattle, Dogs and Cats: A Systematic Review. Prev. Vet. Med. 2023, 219, 106017. [Google Scholar] [CrossRef]
- Hawwas, H.A.E.H.; Aboueisha, A.K.M.; Fadel, H.M.; El-Mahallawy, H.S. Salmonella Serovars in Sheep and Goats and Their Probable Zoonotic Potential to Humans in Suez Canal Area, Egypt. Acta Vet. Scand. 2022, 64, 17. [Google Scholar] [CrossRef]
- Abdulkarim, A.; Khan, M.A.K.B.G.; Aklilu, E. Stray Animal Population Control: Methods, Public Health Concern, Ethics, and Animal Welfare Issues. World’s Vet. J. 2021, 11, 319–326. [Google Scholar] [CrossRef]
- Schanz, L.; Hintze, S.; Hübner, S.; Barth, K.; Winckler, C. Single- and Multi-Species Groups: A Descriptive Study of Cattle and Broiler Behaviour on Pasture. Appl. Anim. Behav. Sci. 2022, 257, 105779. [Google Scholar] [CrossRef]
- Yamaguchi, E.; Fujii, K.; Kayano, M.; Sakurai, Y.; Nakatani, A.; Sasaki, M.; Hertl, J.A.; Grohn, Y.T. Is Salmonella enterica Shared between Wildlife and Cattle in Cattle Farming Areas? An 11-Year Retrospective Study in Tokachi District, Hokkaido, Japan. Vet. Med. Sci. 2022, 8, 758–770. [Google Scholar] [CrossRef]
- Kagambèga, A.; Lienemann, T.; Aulu, L.; Traoré, A.S.; Barro, N.; Siitonen, A.; Haukka, K. Prevalence and Characterization of Salmonella enterica from the Feces of Cattle, Poultry, Swine and Hedgehogs in Burkina Faso and Their Comparison to Human Salmonella Isolates. BMC Microbiol. 2013, 13, 253. [Google Scholar] [CrossRef]
- Mentaberre, G.; Porrero, M.C.; Navarro-Gonzalez, N.; Serrano, E.; Domínguez, L.; Lavín, S. Cattle Drive Salmonella Infection in the Wildlife-Livestock Interface. Zoonoses Public Health 2013, 60, 510–518. [Google Scholar] [CrossRef]
- Tawfik, R.G.; Gawish, M.F.; Abotaleb, M.M.; Nada, H.S.; Morsy, K.; Abumandour, M.M.A.; Torky, H. Genetic Relationship between Salmonella Isolates Recovered from Calves and Broilers Chickens in Kafr El-Sheikh City Using ERIC PCR. Animals 2022, 12, 3428. [Google Scholar] [CrossRef]
- Palhares, J.C.P.; Kich, J.D.; Bessa, M.C.; Biesus, L.L.; Berno, L.G.; Triques, N.J. Salmonella and Antimicrobial Resistance in an Animal-Based Agriculture River System. Sci. Total Environ. 2014, 472, 654–661. [Google Scholar] [CrossRef]
- Cummings, K.J.; Warnick, L.D.; Alexander, K.A.; Cripps, C.J.; Gröhn, Y.T.; McDonough, P.L.; Nydam, D.V.; Reed, K.E. The Incidence of Salmonellosis among Dairy Herds in the Northeastern United States. J. Dairy Sci. 2009, 92, 3766–3774. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.R.; Warnick, L.D.; Greiner, M. Risk Factors for Changing Test Classification in the Danish Surveillance Program for Salmonella in Dairy Herds. J. Dairy Sci. 2007, 90, 2815–2825. [Google Scholar] [CrossRef] [PubMed]
- Mohler, V.L.; Izzo, M.M.; House, J.K. Salmonella in Calves. Vet. Clin. N. Am.-Food Anim. Pract. 2009, 25, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Huston, C.L.; Wittum, T.E.; Love, B.C.; Keen, J.E. Prevalence of Fecal Shedding of Salmonella spp. in Dairy Herds. J. Am. Vet. Med. Assoc. 2002, 220, 645–649. [Google Scholar] [CrossRef]
- Mweu, M.M.; Fournié, G.; Halasa, T.; Toft, N.; Nielsen, S.S. Temporal Characterisation of the Network of Danish Cattle Movements and Its Implication for Disease Control: 2000–2009. Prev. Vet. Med. 2013, 110, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Hofer, K.; Trockenbacher, B.; Sodoma, E.; Khol, J.L.; Dünser, M.; Wittek, T. Establishing a Surveillance Programme for Salmonella Dublin in Austrian Dairy Herds by Comparing Herd-Level vs. Individual Animal Detection Methods. Prev. Vet. Med. 2024, 230, 106277. [Google Scholar] [CrossRef] [PubMed]
- Sinton, L.W.; Braithwaite, R.R.; Hall, C.H.; Mackenzie, M.L. Survival of Indicator and Pathogenic Bacteria in Bovine Feces on Pasture. Appl. Environ. Microbiol. 2007, 73, 7917–7925. [Google Scholar] [CrossRef]
- Acheamfour, C.L.; Parveen, S.; Gutierrez, A.; Handy, E.T.; Behal, S.; Kim, D.; Kim, S.; East, C.; Xiong, R.; Haymaker, J.R.; et al. Detection of Salmonella Enterica and Listeria Monocytogenes in Alternative Irrigation Water by Culture and QPCR-Based Methods in the Mid-Atlantic U.S. Microbiol. Spectr. 2024, 12, e03536-23. [Google Scholar] [CrossRef]
- Schilling, T.; Hoelzle, K.; Philipp, W.; Hoelzle, L.E. Survival of Salmonella typhimurium, Listeria monocytogenes, and ESBL Carrying Escherichia coli in Stored Anaerobic Biogas Digestates in Relation to Different Biogas Input Materials and Storage Temperatures. Agriculture 2022, 12, 67. [Google Scholar] [CrossRef]
- Boes, J.; Alban, L.; Bagger, J.; Møgelmose, V.; Baggesen, D.L.; Olsen, J.E. Survival of Escherichia coli and Salmonella typhimurium in Slurry Applied to Clay Soil on a Danish Swine Farm. Prev. Vet. Med. 2005, 69, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Habing, G.G.; Lombard, J.E.; Kopral, C.A.; Dargatz, D.A.; Kaneene, J.B. Farm-Level Associations with the Shedding of Salmonella and Antimicrobial-Resistant Salmonella in U.S. Dairy Cattle. Foodborne Pathog. Dis. 2012, 9, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Toth, J.D.; Aceto, H.W.; Rankin, S.C.; Dou, Z. Short Communication: Survey of Animal-Borne Pathogens in the Farm Environment of 13 Dairy Operations. J. Dairy Sci. 2013, 96, 5756–5761. [Google Scholar] [CrossRef]
- Baraitareanu, S.; Vidu, L. Dairy Farms Biosecurity to Protect against Infectious Diseases and Antibiotics Overuse. In Antimicrobial Resistance—A One Health Perspective; IntechOpen: London, UK, 2021; ISBN 978-1-83962-433-9. [Google Scholar] [CrossRef]
- Oliveira, C.J.B.; Carvalho, L.F.O.S.; Garcia, T.B. Experimental Airborne Transmission of Salmonella agona and Salmonella typhimurium in Weaned Pigs. Epidemiol. Infect. 2005, 134, 199. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Riggs, M.R.; Urrutia, A.; Osborne, R.C.; Jackson, A.P.; Bailey, M.A.; Macklin, K.S.; Price, S.B.; Buhr, R.J.; Bourassa, D.V. Investigation of the Potential of Aerosolized Salmonella Enteritidis on Colonization and Persistence in Broilers from Day 3 to 21. Poult. Sci. 2021, 100, 101504. [Google Scholar] [CrossRef]
- Wathes, C.M.; Zaidan, W.A.; Pearson, G.R.; Hinton, M.; Todd, N. Aerosol Infection of Calves and Mice with Salmonella typhimurium. Vet. Rec. 1988, 123, 590–594. [Google Scholar]
- Siepker, C.L.; Schwartz, K.J.; Feldhacker, T.J.; Magstadt, D.R.; Sahin, O.; Almeida, M.; Li, G.; Hayman, K.P.; Gorden, P.J. Salmonella Enterica Serovar Brandenburg Abortions in Dairy Cattle. J. Vet. Diagn. Investig. 2022, 34, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.R.; Houe, H.; Nielsen, S.S. Narrative Review Comparing Principles and Instruments Used in Three Active Surveillance and Control Programmes for Non-EU-Regulated Diseases in the Danish Cattle Population. Front. Vet. Sci. 2021, 8, 685857. [Google Scholar] [CrossRef] [PubMed]
- Hinton, M. Salmonella Dublin Abortion in Cattle: Studies on the Clinical Aspects of the Condition. Br. Vet. J. 1974, 130, 556–563. [Google Scholar] [CrossRef] [PubMed]
- National Animal Disease Information Service, Salmonellosis in Cattle. Available online: https://www.nadis.org.uk/disease-a-z/cattle/salmonellosis-in-cattle/ (accessed on 22 January 2025).
- Hanson, D.L.; Loneragan, G.H.; Brown, T.R.; Nisbet, D.J.; Hume, M.E.; Edrington, T.S. Evidence Supporting Vertical Transmission of Salmonella in Dairy Cattle. Epidemiol. Infect. 2016, 144, 962–967. [Google Scholar] [CrossRef]
- Caceres, S.; Moreno, J.; Crespo, B.; Silvan, G.; Illera, J.C. Physiological Stress Responses in Cattle Used in the Spanish Rodeo. Animals 2023, 13, 2654. [Google Scholar] [CrossRef]
- Nielsen, L.R. Review of Pathogenesis and Diagnostic Methods of Immediate Relevance for Epidemiology and Control of Salmonella Dublin in Cattle. Vet. Microbiol. 2013, 162, 1–9. [Google Scholar] [CrossRef] [PubMed]
- de Knegt, L.V.; Kudirkiene, E.; Rattenborg, E.; Sørensen, G.; Denwood, M.J.; Olsen, J.E.; Nielsen, L.R. Combining Salmonella Dublin Genome Information and Contact-Tracing to Substantiate a New Approach for Improved Detection of Infectious Transmission Routes in Cattle Populations. Prev. Vet. Med. 2020, 181, 104531. [Google Scholar] [CrossRef]
- Manuja, B.K.; Manuja, A.; Singh, R.K. Globalization and Livestock Biosecurity. Agric. Res. 2014, 3, 22–31. [Google Scholar] [CrossRef]
- Cleere, J.; Gill, R.; Dement, A.; Biosecurity for Beef Cattle Operations. Texas A&M Agrilife Ext. Available online: https://extensionpublications.unl.edu/assets/pdf/g1411.pdf (accessed on 30 August 2024).
- Bovine Alliance on Management and Nutrition. An Introduction to Infectious Disease Control. 2001. Available online: https://www.aphis.usda.gov/sites/default/files/bamn01_introbiosecurity.pdf (accessed on 11 August 2024).
- Renault, V.; Humblet, M.F.; Pham, P.N.; Saegerman, C. Biosecurity at Cattle Farms: Strengths, Weaknesses, Opportunities and Threats. Pathogens 2021, 10, 1315. [Google Scholar] [CrossRef]
- Davison, H.C.; Sayers, A.R.; Smith, R.P.; Pascoe, S.J.S.; Davies, R.H.; Weaver, J.P.; Evans, S.J. Risk Factors Associated with the Salmonella Status of Dairy Farms in England and Wales. Vet. Rec. 2006, 159, 871. [Google Scholar]
- Blau, D.M.; McCluskey, B.J.; Ladely, S.R.; Dargatz, D.A.; Fedorka-Cray, P.J.; Ferris, K.E.; Headrick, M.L. Salmonella in Dairy Operations in the United States: Prevalence and Antimicrobial Drug Susceptibility. J. Food Prot. 2005, 68, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.J.; Dee, S.; Godden, S. Biosecurity for Gastrointestinal Diseases of Adult Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 35. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Ge, H.; Wang, X.; Guo, Y.; Xu, Z.; Geng, S.; Jiao, X.; Chen, X. Safety of the Salmonella Enterica Serotype Dublin Strain Sdu189-Derived Live Attenuated Vaccine—A Pilot Study. Front. Vet. Sci. 2022, 9, 986332. [Google Scholar] [CrossRef] [PubMed]
- Edrington, T.S.; Arthur, T.M.; Loneragan, G.H.; Genovese, K.J.; Hanson, D.L.; Anderson, R.C.; Nisbet, D.J. Evaluation of Two Commercially-Available Salmonella Vaccines on Salmonella in the Peripheral Lymph Nodes of Experimentally-Infected Cattle. Ther. Adv. Vaccines Immunother. 2020, 8, 2515135520957760. [Google Scholar] [CrossRef]
- Methner, U. Vaccination of Poultry against Salmonella: What Is the Ideal Vaccine (Strain)? 2007. Available online: https://www.cabi.org/Uploads/animal-science/worlds-poultry-science-association/WPSA-czech-republic-2007/8_Methner%20Ulrich.pdf (accessed on 5 November 2024).
- Peeters, L.; Dewulf, J.; Boyen, F.; Brossé, C.; Vandersmissen, T.; Rasschaert, G.; Heyndrickx, M.; Cargnel, M.; Mattheus, W.; Pasmans, F.; et al. Evaluation of Group Vaccination of Sows and Gilts against Salmonella Typhimurium with an Attenuated Vaccine in Subclinically Infected Pig Herds. Prev. Vet. Med. 2020, 182, 104884. [Google Scholar] [CrossRef] [PubMed]
- Holschbach, C.L.; Breuer, R.M.; Pohly, A.E.; Crawford, C.; Aulik, N.A. Multi-Drug Resistant Salmonella Ser. Dublin Cultured from Cryopreserved Holstein Semen. Vet. Rec. Case Rep. 2024, 12, e791. [Google Scholar] [CrossRef]
- Thibier, M.; Guerin, B. Hygienic Aspects of Storage and Use of Semen for Artificial Insemination. Anim. Reprod. Sci. 2000, 62, 233–251. [Google Scholar] [CrossRef] [PubMed]
- Wray, C.; McLaren, I.M.; Beedell, Y.E.; Todd, N. The Epidemiology of Salmonella in Calves: The Role of Markets and Vehicles. Epidemiol. Infect. 1991, 107, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Bender, J.B.; Sreevatsan, S.; Robinson, R.A.; Otterby, D. Animal By-Products Contaminated with Salmonella in the Diets of Lactating Dairy Cows. J. Dairy Sci. 1997, 80, 3064–3067. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Baek, K.H.; Kang, S.C. Control of Salmonella in Foods by Using Essential Oils: A Review. Food Res. Int. 2012, 45, 722–734. [Google Scholar] [CrossRef]
- Kim, H.B.; Isaacson, R.E. Salmonella in Swine: Microbiota Interactions. Annu. Rev. Anim. Biosci. 2017, 5, 43–63. [Google Scholar] [CrossRef]
- Nobrega, D.B.; French, J.E.; Kelton, D.F. A Scoping Review of the Testing of Bulk Milk to Detect Infectious Diseases of Dairy Cattle: Diseases Caused by Bacteria. J. Dairy Sci. 2023, 106, 1986–2006. [Google Scholar] [CrossRef] [PubMed]
- Melmer, D.J.; O’Sullivan, T.L.; Poljak, Z. A Descriptive Analysis of Swine Movements in Ontario (Canada) as a Contributor to Disease Spread. Prev. Vet. Med. 2018, 159, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Santman-Berends, I.M.G.A.; Mars, M.H.; Weber, M.F.; van Duijn, L.; Waldeck, H.W.F.; Biesheuvel, M.M.; van den Brink, K.M.J.A.; Dijkstra, T.; Hodnik, J.J.; Strain, S.A.J.; et al. Control and Eradication Programs for Non-EU Regulated Cattle Diseases in the Netherlands. Front. Vet. Sci. 2021, 8, 670419. [Google Scholar] [CrossRef]
- Canada, P.H.A. of Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). 2024. Available online: https://www.canada.ca/en/public-health/services/surveillance/canadian-integrated-program-antimicrobial-resistance-surveillance-cipars/about-cipars.html (accessed on 22 January 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentum, K.E.; Kuufire, E.; Nyarku, R.; Osei, V.; Price, S.; Bourassa, D.; Samuel, T.; Jackson, C.R.; Abebe, W. Salmonellosis in Cattle: Sources and Risk of Infection, Control, and Prevention. Zoonotic Dis. 2025, 5, 4. https://doi.org/10.3390/zoonoticdis5010004
Bentum KE, Kuufire E, Nyarku R, Osei V, Price S, Bourassa D, Samuel T, Jackson CR, Abebe W. Salmonellosis in Cattle: Sources and Risk of Infection, Control, and Prevention. Zoonotic Diseases. 2025; 5(1):4. https://doi.org/10.3390/zoonoticdis5010004
Chicago/Turabian StyleBentum, Kingsley E., Emmanuel Kuufire, Rejoice Nyarku, Viona Osei, Stuart Price, Dianna Bourassa, Temesgen Samuel, Charlene R. Jackson, and Woubit Abebe. 2025. "Salmonellosis in Cattle: Sources and Risk of Infection, Control, and Prevention" Zoonotic Diseases 5, no. 1: 4. https://doi.org/10.3390/zoonoticdis5010004
APA StyleBentum, K. E., Kuufire, E., Nyarku, R., Osei, V., Price, S., Bourassa, D., Samuel, T., Jackson, C. R., & Abebe, W. (2025). Salmonellosis in Cattle: Sources and Risk of Infection, Control, and Prevention. Zoonotic Diseases, 5(1), 4. https://doi.org/10.3390/zoonoticdis5010004