Mixture Design as a Tool for Optimization of Antimicrobial Activity of Selected Essential Oils †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microorganisms
2.3. Determination of Total Phenolic Content and Antioxidant Activity by the DPPH· and CUPRAC Methods
2.4. Mixture Design
2.5. Evaluation of Antimicrobial Properties of Essential Oils by the Disc Diffusion Method
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Díaz, J.; Gil, Á. Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review. Nutrients 2019, 11, 2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D.; Parniakov, O.; Nowacka, M. The Quality of Red Bell Pepper Subjected to Freeze-Drying Preceded by Traditional and Novel Pretreatment. Foods 2021, 10, 226. [Google Scholar] [CrossRef] [PubMed]
- Zieniuk, B.; Groborz, K.; Wołoszynowska, M.; Ratusz, K.; Białecka-Florjańczyk, E.; Fabiszewska, A. Enzymatic Synthesis of Lipophilic Esters of Phenolic Compounds, Evaluation of Their Antioxidant Activity and Effect on the Oxidative Stability of Selected Oils. Biomolecules 2021, 11, 314. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Turchetti, G.; Giacomello, P.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Liquid and Vapour Phase of Lavandin (Lavandula × intermedia) Essential Oil: Chemical Composition and Antimicrobial Activity. Molecules 2019, 24, 2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teles, A.M.; Silva-Silva, J.V.; Fernandes, J.M.P.; Calabrese, K.d.S.; Abreu-Silva, A.L.; Marinho, S.C.; Mouchrek, A.N.; Filho, V.E.M.; Almeida-Souza, F. Aniba rosaeodora (Var. amazonica Ducke) Essential Oil: Chemical Composition, Antibacterial, Antioxidant and Antitrypanosomal Activity. Antibiotics 2021, 10, 24. [Google Scholar] [CrossRef]
- Bajalan, I.; Rouzbahani, R.; Pirbalouti, A.G.; Maggi, F. Chemical Composition and Antibacterial Activity of Iranian Lavandula × hybrida. Chem. Biodivers. 2017, 14, e1700064. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Xiao, J.J.; Zhou, L.J.; Yao, X.; Tang, F.; Hua, R.M.; Wu, X.W.; Cao, H.Q. Chemical composition, insecticidal and biochemical effects of Melaleuca alternifolia essential oil on the Helicoverpa Armigera. J. Appl. Entomol. 2017, 9, 721–728. [Google Scholar] [CrossRef] [Green Version]
- Baj, T.; Baryluk, A.; Sieniawska, E. Application of mixture design for optimum antioxidant activity of mixtures of essential oils from Ocimum basilicum L., Origanum majorana L. and Rosmarinus officinalis L. Ind. Crops Prod. 2018, 115, 52–61. [Google Scholar] [CrossRef]
- Crespo, Y.A.; Sanchez, L.R.B.; Quintana, Y.G.; Cabrera, A.S.T.; del Sol, A.B.; Mayancha, D.M.G. Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design. Heliyon 2019, 5, e01942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef] [PubMed]
Exp. No. | Essential Oil | E. coli PCM 2057 | L. monocytogenes PCM 2191 | R. mucilaginosa EPSC001 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Inhibition Zone Diameters | ||||||||||||
A | B | C | Measured | Approx. | Residues | Measured | Approx. | Residues | Measured | Approx. | Residues | |
1 | 1.00 | 0.00 | 0.00 | 11.33 | 10.85 | 0.48 | 11.33 | 11.34 | −0.01 | 11.00 | 11.31 | −0.31 |
2 | 0.00 | 1.00 | 0.00 | 19.00 | 19.29 | −0.29 | 18.33 | 17.98 | 0.35 | 17.33 | 16.82 | 0.51 |
3 | 0.00 | 0.00 | 1.00 | 13.33 | 11.96 | 1.37 | 12.33 | 12.43 | −0.10 | 11.33 | 11.31 | 0.02 |
4 | 0.50 | 0.50 | 0.00 | 16.33 | 15.07 | 1.26 | 11.33 | 10.82 | 0.51 | 15.33 | 15.13 | 0.20 |
5 | 0.50 | 0.00 | 0.50 | 11.33 | 11.40 | −0.07 | 9.33 | 9.27 | 0.06 | 14.00 | 14.28 | −0.28 |
6 | 0.00 | 0.50 | 0.50 | 17.33 | 15.63 | 1.70 | 15.33 | 14.91 | 0.42 | 16.67 | 16.13 | 0.54 |
7 | 0.67 | 0.17 | 0.17 | 12.33 | 12.44 | −0.11 | 9.33 | 9.73 | −0.40 | 11.33 | 10.64 | 0.69 |
8 | 0.17 | 0.67 | 0.17 | 16.33 | 16.66 | −0.33 | 12.33 | 13.82 | −1.49 | 11.33 | 13.10 | −1.77 |
9 | 0.17 | 0.17 | 0.67 | 10.67 | 13.00 | −2.33 | 11.33 | 11.45 | −0.12 | 10.67 | 10.98 | −0.31 |
10 | 0.33 | 0.33 | 0.33 | 12.33 | 14.03 | −1.70 | 11.67 | 10.92 | 0.75 | 9.33 | 8.64 | 0.69 |
DPPH | CUPRAC | TPC | ||||
---|---|---|---|---|---|---|
ESSENTIAL OIL | Methanolic Extract | |||||
AA (%) | TEAC (µmol Trolox/g EO) | AA (%) | TEAC (µmol Trolox/g EO) | TEAC (µmol Trolox/g EO) | mg GA/g EO | |
Tea Tree | 12.14 ± 1.30 A,* | 2.22 ± 0.23 A | 10.93 ± 0.24 A | 2.01 ± 0.04 A | 6.55 ± 0.78 A | 0.59 ± 0.05 A |
Rosewood | 7.56 ± 2.29 B | 1.42 ± 0.40 B | 8.29 ± 0.90 B | 1.55 ± 0.16 B | 1.67 ± 0.40 B | 0.11 ± 0.02 C |
Lavender | 12.60 ± 0.92 A | 2.30 ± 0.16 A | 11.97 ± 0.85 A | 2.19 ± 0.15 A | 5.99 ± 0.80 A | 0.27 ± 0.05 B |
Model | SS | df | MS | F | p-Value | R2 | R2 adj |
---|---|---|---|---|---|---|---|
Linear | 63.1605 | 2 | 31.5802 | 14.5802 | 0.0032 | 0.8064 | 0.7511 |
Quadratic | 4.7560 | 3 | 1.5853 | 0.6094 | 0.6434 | 0.8671 | 0.7011 |
Special cubic | 6.7985 | 1 | 6.7985 | 5.6540 | 0.0978 | 0.9539 | 0.8618 |
Cubic | 3.2391 | 2 | 1.6195 | 4.3986 | 0.3195 | 0.9953 | 0.9577 |
Model | SS | df | MS | F | p-Value | R2 | R2 adj |
---|---|---|---|---|---|---|---|
Linear | 45.4444 | 2 | 22.7222 | 7.5901 | 0.0177 | 0.6844 | 0.5942 |
Quadratic | 17.4328 | 3 | 5.8109 | 6.5982 | 0.0499 | 0.9469 | 0.8806 |
Special cubic | 0.0882 | 1 | 0.0882 | 0.0771 | 0.7993 | 0.9483 | 0.8448 |
Cubic | 1.2727 | 2 | 0.6364 | 0.2944 | 0.7934 | 0.9674 | 0.7070 |
Model | SS | df | MS | F | p-Value | R2 | R2 adj |
---|---|---|---|---|---|---|---|
Linear | 24.0494 | 2 | 12.0247 | 1.8474 | 0.2268 | 0.3455 | 0.1585 |
Quadratic | 3.7545 | 3 | 1.2515 | 0.1197 | 0.9438 | 0.3994 | 0.0000 |
Special cubic | 36.8802 | 1 | 36.8802 | 22.4557 | 0.0178 | 0.9292 | 0.7877 |
Cubic | 3.7239 | 2 | 1.8620 | 1.5476 | 0.4942 | 0.9827 | 0.8444 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieniuk, B.; Bętkowska, A. Mixture Design as a Tool for Optimization of Antimicrobial Activity of Selected Essential Oils. Biol. Life Sci. Forum 2021, 6, 98. https://doi.org/10.3390/Foods2021-11018
Zieniuk B, Bętkowska A. Mixture Design as a Tool for Optimization of Antimicrobial Activity of Selected Essential Oils. Biology and Life Sciences Forum. 2021; 6(1):98. https://doi.org/10.3390/Foods2021-11018
Chicago/Turabian StyleZieniuk, Bartłomiej, and Anna Bętkowska. 2021. "Mixture Design as a Tool for Optimization of Antimicrobial Activity of Selected Essential Oils" Biology and Life Sciences Forum 6, no. 1: 98. https://doi.org/10.3390/Foods2021-11018
APA StyleZieniuk, B., & Bętkowska, A. (2021). Mixture Design as a Tool for Optimization of Antimicrobial Activity of Selected Essential Oils. Biology and Life Sciences Forum, 6(1), 98. https://doi.org/10.3390/Foods2021-11018