Abstract
Ab initio DNA synthesis refers to the unusual synthesis of dsDNA (with a length ranging from tens of bp to kbp) by thermophilic DNA polymerases from free dNTPs in the complete absence of added DNAs. As commonly believed, the reaction product is a linear double-stranded DNA in the B form. However, an extremely low efficiency of cloning and the failure to hydrolyze high-molecular-weight DNA, as well as the presence short repeats, palindromes, and AT-rich repeats in the sequence, mean that a more complex spatial structure of this DNA can be assumed. The AFM coupled with nuclease analysis revealed that high-molecular-weight dsDNA products branched and formed net-like structures. The DNA contained single-stranded and triple-stranded segments. These net-like structures may be assumed to be three-dimensional (3D). The present work was the first detailed investigation of ab initio synthesis products. The results may be useful to develop techniques requiring the synthesis of large amounts of DNA with complex spatial structures.
Supplementary Materials
The presentation material of this work is available online at https://www.mdpi.com/article/10.3390/IECBM2022-13691/s1.
Author Contributions
Design of experiments, N.V.Z.; collect AFM images, Z.V.R.; analyze of data, V.N.A.; all authors contributed to writing of the manuscript. All authors have read and agreed to the published version of the manuscript.
Funding
This research received no external funding.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Conflicts of Interest
The authors declare no conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).