Antidiabetic Activities and GC-MS Analysis of 4-Methoxychalcone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Characterization by NMR and ESI-MS/MS
2.4. Determination of Purity Using 1H qNMR
2.5. Analysis of 4-Methoxychalcone Using Headspace and Gas Chromatography Coupled to Mass Spectrometry (HS-GC-MS)
2.5.1. Extraction Procedure
2.5.2. Chromatographic and Spectrometric Conditions
2.6. Molecular Docking
2.7. In Vitro Assays
2.7.1. Bovine Serum Albumin (BSA) Glycation Assay
2.7.2. In Vitro α-Glucosidase Inhibitory Assay
2.7.3. Hemolytic Test
2.7.4. Cell Viability Assay
2.8. In Vivo Assays
2.8.1. Animals
2.8.2. Oral Sucrose Tolerance Test (OSTT)
2.8.3. Oral Glucose Tolerance Test (OGTT)
2.8.4. Oral Glucose Tolerance Test (OGTT) in Diabetic Mice
2.9. Statistical Analysis
3. Results
3.1. Chemical Analysis
3.2. Identification and Characterization of 4-Methoxychalcone via HS-GC-MS
3.3. Glycation Inhibition Effect
3.4. Molecular Docking for BSA
3.5. Hemolytic Activity and Cytotoxic Effect in MRC-5 Cells
3.6. α-Glucosidase Inhibition
3.7. Anti-Hyperglycemic Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogurtsova, K.; Fernandes, J.D.R.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109–119. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas. 2021. Available online: www.diabetesatlas.org (accessed on 20 January 2023).
- Xia, L.; Shen, T.; Dong, W.; Su, F.; Wang, J.; Wang, Q.; Niu, S.; Fang, Y. Comparative efficacy and safety of 8 GLP-1RAs in patients with type 2 diabetes: A network meta-analysis. Diabetes Res. Clin. Pract. 2021, 177, 108904. [Google Scholar] [CrossRef] [PubMed]
- Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic. Res. 2013, 47, 3–27. [Google Scholar] [CrossRef] [PubMed]
- PAHO (Pan American Health Organization), Global Diabetes Compact: Implementation in the Region of the Americas. 2021. Available online: https://www.paho.org/en/topics/diabetes/global-diabetes-compact-implementation-region-americas (accessed on 5 February 2023).
- Haesen, S.; Cöl, Ü.; Schurgers, W.; Evens, L.; Verboven, M.; Driesen, R.B.; Bronckaers, A.; Lambrichts, I.; Deluyker, D.; Bito, V. Glycolaldehyde-modified proteins cause adverse functional and structural aortic remodeling leading to cardiac pressure overload. Sci. Rep. 2020, 22, 12220. [Google Scholar] [CrossRef]
- Illien-Jünger, S.; Palacio-Mancheno, P.; Kindschuh, W.F.; Chen, X.; Sroga, G.E.; Vashishth, D.; Iatridis, J.C. Dietary Advanced Glycation End Products Have Sex- and Age-Dependent Effects on Vertebral Bone Microstructure and Mechanical Function in Mice. J. Bone Miner. Res. 2018, 33, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.M.; Tiwari, S.; Picke, A.K.; Hofbauer, C.; Rauner, M.; Morlock, M.M.; Hofbauer, L.C.; Glüer, C.C. Effects of insulin therapy on porosity, non-enzymatic glycation and mechanical competence in the bone of rats with type 2 diabetes mellitus. Bone 2016, 91, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, I.V.; Furalyov, V.A.; Khotchenkov, V.P.; Popov, V.O.; Kirpichnikov, M.P. A study of the induction of mechano growth factor expression in an in vitro system. Dokl. Biochem. Biophys. 2007, 417, 337–340. [Google Scholar] [CrossRef]
- Today Study Group; Bjornstad, P.; Drews, K.L.; Caprio, S.; Gubitosi-Klug, R.; Nathan, D.M.; Tesfaldet, B.; Tryggestad, J.; White, N.H.; Zeitler, P. Long-Term Complications in Youth-Onset Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 416–426. [Google Scholar] [CrossRef]
- Shori, A.B. Screening of anti-diabetic and antioxidant activities of medicinal plants. J. Integr. Med. 2015, 13, 297–305. [Google Scholar] [CrossRef]
- DeFronzo, R.; Fleming, G.A.; Chen, K.; Bicsak, T.A. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism 2016, 65, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Cathbert, T. Affordability effect of diabetic medicine on Patient’s treatment adherence case study: Itojo Hospital in Ntungamo District. Diabetes Metab. Syndr. 2019, 13, 2025–2031. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriou, P.; Geronikaki, A.; Petrou, A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr. Top. Med. Chem. 2019, 19, 246–263. [Google Scholar] [CrossRef] [PubMed]
- Dariya, B.; Nagaraju, G.P. Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov. Today 2020, 25, 1614–1623. [Google Scholar] [CrossRef] [PubMed]
- Afsar, N.; Jonathan, D.R.; Revathi, B.K.; Satheesh, D.; Manivannan, S. (2E)-2-(4-ethoxybenzylidene)-3,4-dihydro-2H-naphthalen-1-one single crystal: Synthesis, growth, crystal structure, spectral characterization, biological evaluation and binding interactions with SARS-CoV-2 main protease. J. Mol. Struct. 2021, 1244, 130967. [Google Scholar] [CrossRef] [PubMed]
- Tajammal, A.; Batool, M.; Ramzan, A.; Samra, M.M.; Mahnoor, I.; Verpoort, F.; Ahmad, I.; Abdullah, G.; Munawar, A.S.; Munawar, A.; et al. Synthesis, antihyperglycemic activity and computational studies of antioxidant chalcones and flavanones derived from 2,5 dihydroxyacetophenone. J. Mol. Struct. 2017, 1148, 512–520. [Google Scholar] [CrossRef]
- Iftikhar, S.; Khan, S.; Bilal, A.; Manzoor, S.; Abdullah, M.; Emwas, A.H.; Sioud, S.; Gao, X.; Chotana, G.A.; Faisal, A.; et al. Synthesis and evaluation of modified chalcone based p53 stabilizing agents. Bioorg Med. Chem. Lett. 2017, 27, 4101–4106. [Google Scholar] [CrossRef]
- Burmaoglu, S.; Kazancioglu, A.E.; Kaya, R.; Kazancioglu, M.; Karaman, M.; Oztekin, A.; Ilhami Gulcin, I. Synthesis of novel organohalogen chalcone derivatives and screening of their molecular docking study and some enzymes inhibition effects. J. Mol. Struct. 2020, 1208, 127868. [Google Scholar] [CrossRef]
- Nursamsiar, S.; Febrina, E.; Asnawi, S.; Syafiie, A. Synthesis and Inhibitory Activity of Curculigoside a Derivatives as Potential Anti-Diabetic Agents with β-Cell Apoptosis. J. Mol. Struct. 2022, 1265, 133292. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Hsieh, T.J.; El-Shazly, M.; Chuang, D.W.; Tsai, Y.H.; Yen, C.T.; Wu, S.F.; Wu, Y.C.; Chang, F.R. Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorg Med. Chem. Lett. 2012, 22, 12. [Google Scholar] [CrossRef]
- Lima, D.C.; Vale, C.R.; Véras, J.H.; Bernardes, A.; Pérez, C.N.; Chen-Chen, L. Absence of genotoxic effects of the chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one) and its potential chemoprevention against DNA damage using in vitro and in vivo assays. PLoS ONE 2017, 12, e0171224. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Israf, D.A.; Lajis, N.H.; Shaari, K.; Mohamed, H.; Wahab, A.A.; Ariffin, K.T.; Hoo, W.Y.; Aziz, N.A.; Kadir, A.A.; et al. Cardamonin, inhibits pro-inflammatory mediators in activated RAW 264.7 cells and whole blood. Eur. J. Pharmacol. 2006, 538, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.N.; Zhang, X.; Jantan, I.; Zhu, H.L.; Amjad, M.W.; Masand, V.H. Synthesis, Molecular Modeling, and Biological Evaluation of Novel 1, 3-Diphenyl-2-propen-1-one Based Pyrazolines as Anti-inflammatory Agents. Chem. Biol. Drug Des. 2015, 85, 729–742. [Google Scholar] [CrossRef]
- Teixeira, A.M.; Santos, H.S.; Bandeira, P.N.; Julião, M.S.; Freire, P.T.; Lima, V.N.; Cruz, B.G.; da Silva, P.T.; Coutinho, H.D.; Sena, M., Jr. Structural, spectroscopic and microbiological characterization of the chalcone 2E-1-(2ʹ-hydroxy-3ʹ,4ʹ,6ʹ-trimethoxyphenyl)-3-(phenyl)-prop-2-en-1-one derived from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone. J. Mol. Struct. 2019, 1179, 739–748. [Google Scholar] [CrossRef]
- Lahtchev, K.L.; Batovska, D.I.; Parushev, S.P.; Ubiyvovk, V.M.; Sibirny, A.A. Antifungal activity of chalcones: A mechanistic study using various yeast strains. Eur. J. Med. Chem. 2008, 43, 2220–2228. [Google Scholar] [CrossRef] [PubMed]
- Brito, D.H.A.; Almeida-Neto, F.W.Q.; Ribeiro, L.R.; Magalhães, E.P.; Menezes, R.R.P.P.B.; Sampaio, T.L.; Martins, A.M.C.; Bandeira, P.N.; Marinho, M.M.; Marinho, E.S. Synthesis, structural and spectroscopic analysis, and antiproliferative activity of chalcone derivate (E)-1-(4-aminophenyl)-3-(benzo[b]thiophen-2-yl)prop-2-en-1-one in Trypanosoma Cruzi. J. Mol. Struct. 2022, 1253, 132197. [Google Scholar] [CrossRef]
- Oliveira, S.C.E.; Acho, R.D.L.; Silva, P.J.B.; Morales-Gamba, D.R.; Pontes, D.L.F.; Rosário, S.A.; Bezerra, A.J.; Campos, R.F.; José Barcellos, M.F.J.; Lima, S.E.; et al. Hypoglycemic effect and toxicity of the dry extract of Eugenia biflora (L.) DC. leaves. J. Ethnopharmacol. 2022, 293, 115276. [Google Scholar] [CrossRef] [PubMed]
- Samuels, R.E.; Wang, T. Quantitative 1H NMR analysis of a difficult drug substance and its exo-isomer as hydrochloride salts using alkaline deuterated methanol. J. Pharm. Biomed. Anal. 2020, 187, 113338. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, S.B.; Kreutz, T.; Limberger, R.P.; da Veiga, V.F.; Koester, L.S. Development, Validation and Application of a Gas Chromatography Method for the Determination of Dillapiole from Piper Aduncum Essential Oil in Skin Permeation Samples. Biomed. Chromatogr. 2022, 37, e5544. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Xiong, J.; Ji, Y.; Zhang, Y.; Honghan, Y.; Yang, S.C. Huanwen Chen, Differentiation of isomeric methoxychalcones by electrospray ionization tandem mass spectrometry. Int. J. Mass. Spectrom. 2018, 434, 100–107. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Bujacz, A. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 1278–1289. [Google Scholar] [CrossRef] [PubMed]
- Kiho, T.; Morimoto, H.; Kobayashi, T.; Usui, S.; Ukai, S.; Aizawa, K.; Inakuma, T. Effect of a polysaccharide (TAP) from the fruiting bodies of Tremella aurantia on glucose metabolism in mouse liver. Biosci. Biotechnol. Biochem. 2000, 64, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.S.; Mar, J.M.; da Silva, L.S.; Acho, L.D.R.; Silva, B.J.P.; Lima, E.S.; Campelo, P.H.; Sanches, E.A.; Bezerra, J.A.; Chaves, F.C.M.; et al. Pedra-ume caá fruit: An Amazon cherry rich in phenolic compounds with antiglycant and antioxidant properties. Food Res. Int. 2019, 123, 674–683. [Google Scholar] [CrossRef]
- Andrade, C.A.; Becerra, J.J.; Cárdenas, V.R. α-glucosidase-inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. J. Ethnopharmacol. 2008, 116, 27–32. [Google Scholar] [CrossRef]
- Jimenez, P.C.; Fortier, S.C.; Lotufo, T.M.C.; Pessoa, C.; Moraes, M.E.A.; De Moraes, M.O.; Costa-Lotufo, L.V. Biological activity in extracts of ascidians (Tunicata, Ascidiacea) from the northeastern Brazilian coast. J. Exp. Mar. Bio. Ecol. 2003, 287, 93–101. [Google Scholar] [CrossRef]
- Amin, K.; Dannenfelser, R.M. In vitro hemolysis: Guidance for the pharmaceutical scientist. J. Pharm. Sci. 2006, 95, 1173–1176. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 16, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Zulkawi, N.; Ng, K.H.; Zamberi, R.; Yeap, S.K.; Satharasinghe, D.; Jaganath, I.B.; Jamaluddin, A.B.; Tan, S.W.; Ho, W.Y.; Alitheen, N.B.; et al. In vitro characterization and in vivo toxicity, antioxidant and immunomodulatory effect of fermented foods; Xeniji™. BMC Complement. Altern. Med. 2017, 30, 344. [Google Scholar] [CrossRef]
- Arya, A.; Al-Obaidi, M.M.; Shahid, N.; Noordin, M.I.B.; Looi, C.Y.; Wong, W.F.; Khaing, S.L.; Mustafa, M.R. Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: A mechanistic study. Food Chem. Toxicol. 2014, 71, 183–196. [Google Scholar] [CrossRef]
- Garrido, B.C.; Carvalho, L.J. Nuclear magnetic resonance using electronic referencing: Method validation and evaluation of the measurement uncertainties for the quantification of benzoic acid in orange juice. Magn. Reson. Chem. 2015, 53, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.S.C.; Pontes, F.L.D.; Acho, L.D.R.; Rosário, A.S.; Silva, B.J.P.; Bezerra, J.Á.; Campos, F.R.; Lima, E.S.; Machado, M.B. qNMR quantification of phenolic compounds in dry extract of Myrcia multiflora leaves and its antioxidant, anti-AGE, and enzymatic inhibition activities. J. Pharm. Biomed. Anal. 2021, 15, 114109. [Google Scholar] [CrossRef] [PubMed]
- 4’-Methoxychalcone(22966-19-4) 1H NMR Atlas of Related Products. Available online: https://www.chemicalbook.com/SpectrumEN_22966-19-4_1HNMR.htm. (accessed on 26 December 2023).
- Sarmah, S.; Roy, A.S. A review on prevention of glycation of proteins: Potential therapeutic substances to mitigate the severity of diabetes complications. Int. J. Biol. Macromol. 2022, 15, 565–588. [Google Scholar] [CrossRef] [PubMed]
- Thornalley, P.J. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys. 2003, 419, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, A.; Farooq, U.; Taha, M.; Shah, A.A.S.; Halim, A.S.; Akram, A.; Khan, Z.M.; Jan, K.A.; Al-Harrasi, A. Oxindole-based chalcones: Synthesis and their activity against glycation of proteins. Med Chem Res. 2019, 28, 900–906. [Google Scholar] [CrossRef]
- Carvalho, M.G.; Cesarin-Sobrinho, D.; Netto-Ferreira, J.C. Binding studies of lophirone B with bovine serum albumin (BSA): Combination of spectroscopic and molecular docking techniques. J. Mol. Struct. 2017, 1128, 606–611. [Google Scholar]
- Sudlow, G.; Birkett, D.J.; Wade, D.N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 1975, 11, 824–832. [Google Scholar] [PubMed]
- Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 2005, 353, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Al-Mehizia, A.A.; Bakheit, A.H.; Zargar, S.; Bhat, M.A.; Asmari, M.M.; Wani, T.A. Evaluation of Biophysical Interaction between Newly Synthesized Pyrazoline Pyridazine Derivative and Bovine Serum Albumin by Spectroscopic and Molecular Docking Studies. J. Spectrosc. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, N.; Rathee, G.; Sood, D.; Singh, A.; Tomar, V.; Dass, S.K.; Chandra, R. Privileged Scaffold Chalcone: Synthesis, Characterization and Its Mechanistic Interaction Studies with BSA Employing Spectroscopic and Chemoinformatics Approaches. ACS Omega 2020, 5, 2267–2279. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Thirunarayanan, A.; Shano, L.B.; Hemamalini, A.; Sundaramoorthy, A.; Mangaiyarkarasi, R.; Abu, N.; Ganesan, S.; Chinnathambi, S.; Pandian, G.N. Chalcone derivatives’ interaction with human serum albumin and cyclooxygenase-2. RSC Adv. 2024, 14, 835–2849. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.S.; Avelino, J.A.; Siqueira, A.L.N.; Ramos, L.F.P.; Santos, G.B. O uso de softwares livres em aula prática sobre filtros moleculares de biodisponibilidade oral de fármacos. Química Nova 2021, 44, 1036–1044. [Google Scholar] [CrossRef]
- Jabeen, F.; Oliferenko, P.V.; Oliferenko, A.A.; Pillai, G.G.; Ansari, F.L.; Hall, C.D.; Katritzky, A.R. Dual inhibition of the α-glucosidase and butyrylcholinesterase studied by molecular field topology analysis. Eur. J. Med. Chem. 2014, 80, 228–242. [Google Scholar] [CrossRef]
- Adelusi, T.I.; Du, L.; Chowdhury, A.; Xiaoke, G.; Lu, Q.; Yin, X. Signaling pathways and proteins targeted by anti-diabetic chalcones. Life Sci. 2021, 284, 118982. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Shen, W.; Gao, W.; Namujia, L.; Yang, X.; Cao, J.; Sun, L. Essential moieties of myricetins, quercetins and catechins for binding and inhibitory activity against α-Glucosidase. Bioorg. Chem. 2021, 115, 105235. [Google Scholar]
- Lacombe, A.; Li, R.W.; Klimis-Zacas, D.; Kristo, A.S.; Tadepalli, S.; Krauss, E.; Young, R.; Wu, V.C. Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS ONE 2013, 28, e67497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, L.; Sun, Y.; Qing, D.-G.; Xu, X.-Q.; Wang, J.-C.; Si, J.-Y.; Li, N. The Regulatory Effects of Licochalcone A on the Intestinal Epithelium and Gut Microbiota in Murine Colitis. Molecules 2021, 26, 4149. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.J.; Zeng, J.C.; Lin, P.; Tang, D.B.; Yuan, E.; Tu, Y.G.; Zhang, Q.F.; Chen, J.G.; Peng, D.Y.; Yin, Z.P. Chalcone-1-Deoxynojirimycin Heterozygote Reduced the Blood Glucose Concentration and Alleviated the Adverse Symptoms and Intestinal Flora Disorder of Diabetes Mellitus Rats. Molecules 2022, 27, 7583. [Google Scholar] [CrossRef]
- Jung, S.H.; Park, S.Y.; Kim-Pak, Y.; Lee, H.K.; Park, K.S.; Shin, K.H.; Ohuchi, K.; Shin, H.K.; Keum, S.R.; Lim, S.S. Synthesis and PPAR-gamma ligand-binding activity of the new series of 2’-hydroxychalcone and thiazolidinedione derivatives. Chem. Pharm. Bull. 2006, 54, 368–371. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acho, L.D.R.; Oliveira, E.S.C.; Carneiro, S.B.; Melo, F.P.A.; Mendonça, L.d.S.; Costa, R.A.; Borges, R.S.; Machado, M.B.; Koolen, H.H.F.; Magalhães, I.R.d.S.; et al. Antidiabetic Activities and GC-MS Analysis of 4-Methoxychalcone. AppliedChem 2024, 4, 140-156. https://doi.org/10.3390/appliedchem4020010
Acho LDR, Oliveira ESC, Carneiro SB, Melo FPA, Mendonça LdS, Costa RA, Borges RS, Machado MB, Koolen HHF, Magalhães IRdS, et al. Antidiabetic Activities and GC-MS Analysis of 4-Methoxychalcone. AppliedChem. 2024; 4(2):140-156. https://doi.org/10.3390/appliedchem4020010
Chicago/Turabian StyleAcho, Leonard D. R., Edinilze S. C. Oliveira, Simone B. Carneiro, Fernanda Paula A. Melo, Leilane de S. Mendonça, Renyer A. Costa, Rosivaldo S. Borges, Marcos B. Machado, Hector H. F. Koolen, Igor Rafael dos S. Magalhães, and et al. 2024. "Antidiabetic Activities and GC-MS Analysis of 4-Methoxychalcone" AppliedChem 4, no. 2: 140-156. https://doi.org/10.3390/appliedchem4020010
APA StyleAcho, L. D. R., Oliveira, E. S. C., Carneiro, S. B., Melo, F. P. A., Mendonça, L. d. S., Costa, R. A., Borges, R. S., Machado, M. B., Koolen, H. H. F., Magalhães, I. R. d. S., & Lima, E. S. (2024). Antidiabetic Activities and GC-MS Analysis of 4-Methoxychalcone. AppliedChem, 4(2), 140-156. https://doi.org/10.3390/appliedchem4020010