The Medicinal Moroccan Plant Cladanthus arabicus as a Prominent Source of Sesquiterpenes Cladantholide and Sintenin
Abstract
1. Introduction
2. Use of C. arabicus in Traditional Medicine
3. Pharmacological Activities of C. arabicus Extracts
4. Phytochemical Analysis
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Bellioua, S.; Amari, S.; Warda, K.; Aghraz, A.; Dilagui, I.; Ouhaddou, S.; Sissi, S.; Bekkouche, K.; Larhsini, M.; Markouk, M. Chemical profile, antioxidant and antimicrobial effects of essential oil from the Moroccan endemic plant Cladanthus scariosus (L.). J. Essent. Oil Res. 2022, 34, 394–404. [Google Scholar] [CrossRef]
- El Hafidi, S.; Bakhy, K.; Ouhssine, M.; Benzakour, A.; Khamar, H.; Casanova, J.; Paoli, M.; Tomi, F. Composition and Chemical Variability of the Essential Oil from Aerial Parts of Cladanthus scariosus, an Endemic Species to the Moroccan High Atlas. Chem. Biodivers. 2023, 20, e202201022. [Google Scholar] [CrossRef]
- Elouaddari, A.; El Amrani, A.; JamalEddine, J. Intraspecific variability of the essential oil of Cladanthus mixtus from Morocco. Nat. Prod. Commun. 2014, 9, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Benmerache, A.; Alabdul Magid, A.; Kabouche, A.; Harakat, D.; Voutquenne-Nazabadioko, L.; Kabouche, Z. 6‴-O-acetylisospinosin, a new C-glycosylflavone and known compounds from the aerial parts of Cladanthus mixtus. Nat. Prod. Res. 2020, 34, 2887–2893. [Google Scholar] [CrossRef]
- El Mihyaoui, A.; Erbiai, E.H.; Charfi, S.; Pinto, E.; Castillo, M.E.C.; Hernández-Ruiz, J.; Cano, A.; Badoc, A.; Lamarti, A.; Esteves da Silva, J.C.G.; et al. Chemical Characterization and Several Bioactivities of Cladanthus mixtus from Morocco. Molecules 2023, 28, 3196. [Google Scholar] [CrossRef] [PubMed]
- Elouaddari, A.; El Amrani, A.; Eddine, J.; Correia, A.I.D.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C. Yield and chemical composition of the essential oil of Moroccan chamomile [Cladanthus mixtus (L.) Chevall.] growing wild at different sites in Morocco. Flavour Fragance J. 2013, 28, 360–366. [Google Scholar] [CrossRef]
- Ghanimi, R.; Ouhammou, A.; Babahmad, R.A.; Cherkaoui, M. A Quantitative Study on the Ethnobotanical Knowledge about Wild Edible Plants among the Population of Messiwa. Ethiop. J. Health Sci. 2022, 32, 1237–1244. [Google Scholar] [PubMed]
- Ghanimi, R.; Ouhammou, A.; Ahouach, A.; Cherkaoui, M. Ethnobotanical study on wild edible plants traditionally used by Messiwa people, Morocco. J. Ethnobiol. Ethnomed. 2022, 18, 16. [Google Scholar] [CrossRef]
- Ait Baamrane, M.A.; Shehzad, W.; Ouhammou, A.; Abbad, A.; Naimi, M.; Coissac, E.; Taberlet, P.; Znari, M. Assessment of the food habits of the Moroccan dorcas gazelle in M’Sabih Talaa, west central Morocco, using the trnL approach. PLoS ONE 2012, 7, e35643. [Google Scholar] [CrossRef]
- Blajan, L.; Lasnami, K. Nutrition et pathologie du dromadaire. Options Méditerr. 1989, 2, 131–139. [Google Scholar]
- Kumar, P.; Kumar, R. Rural Health Scenario—Role of family medicine: Academy of Family Physicians of India Position Paper. J. Fam. Med. Prim. Care 2018, 7, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Kolié, D.; Van De Pas, R.; Codjia, L.; Zurn, P. Increasing the availability of health workers in rural sub-Saharan Africa: A scoping review of rural pipeline programmes. Hum. Resour. Health 2023, 21, 20. [Google Scholar] [CrossRef] [PubMed]
- WHO Established the Global Center for Traditional Medicine in India. Available online: https://www.who.int/news/item/25-03-2022-who-establishes-the-global-centre-for-traditional-medicine-in-india (accessed on 30 October 2023).
- Šantić, Ž.; Pravdić, N.; Bevanda, M.; Galić, K. The historical use of medicinal plants in traditional and scientific medicine. Psychiatr. Danub. 2017, 29, 787–792. [Google Scholar] [PubMed]
- Cingi, C.; Bayar Muluk, N.; Tezol, A.; Çukurova, I. Efficacy of traditional herbal formulas on human immunity. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 27–40. [Google Scholar] [PubMed]
- Kurek, M.; Benaida-Debbache, N.; Elez Garofulić, I.; Galić, K.; Avallone, S.; Voilley, A.; Waché, Y. Antioxidants and Bioactive Compounds in Food: Critical Review of Issues and Prospects. Antioxidants 2022, 11, 742. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Liu, Y.; Li, S.H. The untapped potential of plant sesterterpenoids: Chemistry, biological activities and biosynthesis. Nat. Prod. Rep. 2021, 38, 2293–2314. [Google Scholar] [CrossRef]
- Calixto, J.B.; Beirith, A.; Ferreira, J.; Santos, A.R.; Filho, V.C.; Yunes, R.A. Naturally occurring antinociceptive substances from plants. Phytother. Res. 2000, 14, 401–418. [Google Scholar] [CrossRef]
- Dewanjee, S.; Sohel, M.; Hossain, M.S.; Ansari, F.; Islam, M.T.; Sultana, F.; Al Mamun, A.; Islam, M.M.; Amin, M.N. A comprehensive review on clinically proven natural products in the management of nerve pain, with mechanistic insights. Heliyon 2023, 9, e15346. [Google Scholar] [CrossRef]
- Kooti, W.; Servatyari, K.; Behzadifar, M.; Asadi-Samani, M.; Sadeghi, F.; Nouri, B.; Zare Marzouni, H. Effective Medicinal Plant in Cancer Treatment, Part 2: Review Study. J. Evid. Based Complement. Altern. Med. 2017, 22, 982–995. [Google Scholar] [CrossRef]
- Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M.; et al. Medicinal Plants in the Prevention and Treatment of Colon Cancer. Oxid. Med. Cell Longev. 2019, 2019, 2075614. [Google Scholar] [CrossRef]
- Menezes, R.; Foito, A.; Jardim, C.; Costa, I.; Garcia, G.; Rosado-Ramos, R.; Freitag, S.; Alexander, C.J.; Outeiro, T.F.; Stewart, D.; et al. Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases. Antioxidants 2020, 9, 789. [Google Scholar] [CrossRef]
- Rosa, M.N.; E Silva, L.R.V.; Longato, G.B.; Evangelista, A.F.; Gomes, I.N.F.; Alves, A.L.V.; de Oliveira, B.G.; Pinto, F.E.; Romão, W.; de Rezende, A.R.; et al. Bioprospecting of Natural Compounds from Brazilian Cerrado Biome Plants in Human Cervical Cancer Cell Lines. Int. J. Mol. Sci. 2021, 22, 3383. [Google Scholar] [CrossRef]
- Rani, D.M.; Wongso, H.; Purwoko, R.Y.; Winarto, N.B.; Shalas, A.F.; Triatmoko, B.; Pratama, A.N.W.; Keller, P.A.; Nugraha, A.S. Anti-cancer bioprospecting on medicinal plants from Indonesia: A review. Phytochemistry 2023, 216, 113881. [Google Scholar] [CrossRef]
- Idm’hand, E.; Msanda, F.; Cherifi, K. Ethnopharmacological review of medicinal plants used to manage diabetes in Morocco. Clin. Phytosci. 2020, 6, 18. [Google Scholar] [CrossRef]
- Benkhnigue, O.; Ben Akka, F.; Salhi, S.; Fadli, M.; Douira, A.; Zidane, L. Catalogue des plantes médicinales utilisées dans le traitement du diabète dans la région d’Al Haouz-Rhamna (Maroc). J. Anim. Plant Sci. 2014, 23, 3539–3568. [Google Scholar]
- Belhaj, S.; Chaachouay, N.; Zidane, L. Ethnobotanical and toxicology study of medicinal plants used for the treatment of diabetes in the High Atlas Central of Morocco. J. Pharm. Pharmacog. Res. 2021, 9, 619–662. [Google Scholar] [CrossRef]
- Benkhnigue, O.; Chaachouay, N.; Khamar, H.; El Azzouzi, F.; Douira, A.; Zidane, L. Ethnobotanical and ethnopharmacological study of medicinal plants used in the treatment of anemia in the region of Haouz-Rehamna (Morocco). J. Pharm. Pharmacogn. Res. 2022, 10, 279–302. [Google Scholar] [CrossRef]
- Ouhaddou, H.; Alaoui, A.; Laaribya, S.; Ayan, S. Ethnobotanical survey of medicinal plants used for treating diabetes in Agadir Ida Outanane region, Southwestern Morocco. Arab. J. Med. Aromat. Plants 2020, 6, 72–86. [Google Scholar]
- Katiri, A.; Karkaoui, M.; Msanda, F.; Boubaker, H. Ethnobotanical Survey of Medicinal Plants Used for the Treatment of Diabetes in the Tizi n’ Test Region (Taroudant Province, Morocco). J. Pharmacogn. Nat. Prod. 2017, 3, 1000130. [Google Scholar] [CrossRef]
- Chaachouay, N.; Benkhnigue, O.; Fadli, M.; El Ibaoui, H.; Zidane, L. Ethnobotanical and ethnopharmacological studies of medicinal and aromatic plants used in the treatment of metabolic diseases in the Moroccan Rif. Heliyon 2019, 5, e02191. [Google Scholar] [CrossRef] [PubMed]
- Naceiri Mrabti, H.; Bouyahya, A.; Naceiri Mrabti, N.; Jaradat, N.; Doudach, L.; Faouzi, M.E.A. Ethnobotanical Survey of Medicinal Plants Used by Traditional Healers to Treat Diabetes in the Taza Region of Morocco. eCAM 2021, 2021, 5515634. [Google Scholar] [CrossRef]
- Daoudi, A.; Bammou, M.; Zarkani, S.; Slimani, I.; Ibijbijen, J.; Nassiri, L. Ethnobotanical study of medicinal flora in rural municipality of Aguelmouss—Khenifra province—(Morocco). Phytothérapie 2016, 14, 220–228. [Google Scholar] [CrossRef]
- El Hanbali, F.; Mellouki, F.; Akssira, M.; El hassani, B.; Blázquez, M.A.; Boira, H. Composition and Antibacterial Activity of Essential Oils of Cladanthus arabicus Cass. (Asteraceae). J. Essent. Oil Bear. Plants 2005, 8, 213–217. [Google Scholar] [CrossRef]
- Aghraz, A.; Wanner, J.; Schmidt, E.; Aitdra, L.; Aitsidibrahim, M.; Tabanca, N.; Ali, A.; Nafis, A.; Hassani, L.; Markouk, M.; et al. Chemical Composition, in vitro Antioxidant, Antimicrobial and Insecticidal Activities of Essential Oil from Cladanthus arabicus. J. Essent. Oil Bear. Plants 2017, 20, 601–609. [Google Scholar] [CrossRef]
- Aghraz, A.; Benameur, Q.; Gervasi, T.; Ait Dra, L.; Ben-Mahdi, M.H.; Larhsini, M.; Markouk, M.; Cicero, N. Antibacterial activity of Cladanthus arabicus and Bubonium imbricatum essential oils alone and in combination with conventional antibiotics against Enterobacteriaceae isolates. Lett. Appl. Microbiol. 2018, 67, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Mziouid, A.; Chebli, B.; Berrabah, M.; Chebli, H.; Heimeur, N.; Bounimi, S.; Mayad, E.H. Phytochemical screening and antioxidant activity of four Moroccan aromatic plant methanolic extracts and essential oils. Arab. J. Med. Aromat. Plants 2022, 8, 117–132. [Google Scholar]
- Dos Santos, A.L.; Amaral, M.; Hasegawa, F.R.; Lago, J.H.G.; Tempone, A.G.; Sartorelli, P. (-)-T-Cadinol-a Sesquiterpene Isolated From Casearia sylvestris (Salicaceae)-Displayed In Vitro Activity and Causes Hyperpolarization of the Membrane Potential of Trypanosoma cruzi. Front. Pharmacol. 2021, 12, 734127, Corrigendum in Front. Pharmacol. 2022, 13, 865432. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, R.; Zhou, Z.; Liu, R.; Wen, J. Efficacy and safety of caffeic acid tablets in the treatment of thrombocytopenia: A systematic review and meta-analysis. Medicine 2023, 102, 35353. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, R.; Singh, S.V.; Jaiswal, K.; Kumar, R.; Pandey, A.K. Modulatory effect of caffeic acid in alleviating diabetes and associated complications. World J. Diabetes 2023, 14, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Okpara, E.S.; Adedara, I.A.; Guo, X.; Klos, M.L.; Farombi, E.O.; Han, S. Molecular mechanisms associated with the chemoprotective role of protocatechuic acid and its potential benefits in the amelioration of doxorubicin-induced cardiotoxicity: A review. Toxicol. Rep. 2022, 9, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, E.; Gangemi, S.; Genovese, C.; Cicero, N.; Casciaro, M. Polyphenols from Mediterranean Plants: Biological Activities for Skin Photoprotection in Atopic Dermatitis, Psoriasis, and Chronic Urticaria. Plants 2023, 12, 3579. [Google Scholar] [CrossRef]
- Aghraz, A.; Albergamo, A.; Benameur, Q.; Salvo, A.; Larhsini, M.; Markouk, M.; Gervasi, T.; Cicero, N. Polyphenols contents, heavy metals analysis and in vitro antibacterial activity of extracts from Cladanthus arabicus and Bubonium imbricatum of Moroccan Origin. Nat. Prod. Res. 2020, 34, 63–70. [Google Scholar] [CrossRef]
- Aghraz, A.; Gonçalves, S.; Rodríguez-Solana, R.; Ait Dra, L.; Di Stefano, V.; Dugo, G.; Cicero, N.; Larhsini, M.; Markouk, M.; Romano, A. Antioxidant activity and enzymes inhibitory properties of several extracts from two Moroccan Asteraceae species. S. Afr. J. Bot. 2018, 118, 58–64. [Google Scholar] [CrossRef]
- Daniewski, W.M.; Danikiewicz, W.; Gumulka, M.; Pankowska, E.; Krajewski, J.; Grabarczyk, H.; Wichlacz, M. Sesquiterpenes of Cladanthus arabicus. Phytochemistry 1993, 34, 1639–1641. [Google Scholar] [CrossRef]
- Monde, K.; Oya, T.; Takasugi, M.; Shirata, A. A guaianolide phytoalexin, cichoralexin, from Cichorium intybus. Phytochemistry 1990, 29, 3449–3451. [Google Scholar] [CrossRef]
- Arias-Durán, L.; Estrada-Soto, S.; Hernández-Morales, M.; Chávez-Silva, F.; Navarrete-Vázquez, G.; León-Rivera, I.; Perea-Arango, I.; Villalobos-Molina, R.; Ibarra-Barajas, M. Tracheal relaxation through calcium channel blockade of Achillea millefolium hexanic extract and its main bioactive compounds. J. Ethnopharmacol. 2020, 253, 112643. [Google Scholar] [CrossRef] [PubMed]
- Perri, F.; Frattaruolo, L.; Haworth, I.; Brindisi, M.; El-magboub, A.; Ferrario, A.; Gomer, C.; Aiello, F.; Adams, J.D. Naturally occurring sesquiterpene lactones and their semi-synthetic derivatives modulate PGE2 levels by decreasing COX2 activity and expression. Heliyon 2019, 5, e01366, Corrigendum in Heliyon 2019, 5, e01513. [Google Scholar] [CrossRef] [PubMed]
- Khazneh, E.; Hřibová, P.; Hošek, J.; Suchý, P.; Kollár, P.; Pražanová, G.; Muselík, J.; Hanaková, Z.; Václavík, J.; Miłek, M.; et al. The Chemical Composition of Achillea wilhelmsii C. Koch and Its Desirable Effects on Hyperglycemia, Inflammatory Mediators and Hypercholesterolemia as Risk Factors for Cardiometabolic Disease. Molecules 2016, 21, 404. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Li, X.F.; Jin, M.J.; Li, Y.; Wu, Y.L.; Jin, Q.; Zhang, Y.; Li, X.; Jiang, M.; Cui, B.W.; et al. Leucodin attenuates inflammatory response in macrophages and lipid accumulation in steatotic hepatocytes via P2x7 receptor pathway: A potential role in alcoholic liver disease. Biomed. Pharmacother. 2018, 107, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Arias-Durán, L.; Estrada-Soto, S.; Hernández-Morales, M.; Millán-Pacheco, C.; Navarrete-Vázquez, G.; Villalobos-Molina, R.; Ibarra-Barajas, M.; Almanza-Pérez, J.C. Antihypertensive and vasorelaxant effect of leucodin and achillin isolated from Achillea millefolium through calcium channel blockade and NO production: In vivo, functional ex vivo and in silico studies. J. Ethnopharmacol. 2021, 273, 113948. [Google Scholar] [CrossRef] [PubMed]
- Tschiggerl, C.; Bucar, F. Guaianolides and volatile compounds in chamomile tea. Plant Foods Human Nutr. 2012, 67, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Csupor-Löffler, B.; Hajdú, Z.; Zupkó, I.; Réthy, B.; Falkay, G.; Forgo, P.; Hohmann, J. Antiproliferative effect of flavonoids and sesquiterpenoids from Achillea millefolium s.l. on cultured human tumour cell lines. Phytother. Res. 2009, 23, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Trifunović, S.; Isaković, A.M.; Isaković, A.; Vučković, I.; Mandić, B.; Novaković, M.; Vajs, V.; Milosavljević, S.; Trajković, V. Isolation, characterization, and in vitro cytotoxicity of new sesquiterpenoids from Achillea clavennae. Planta Med. 2014, 80, 297–305. [Google Scholar] [CrossRef]
- Gören, N.; Oksüz, S.; Ulubelen, A. A sesquiterpene lactone, sintenin, from Achillea sintenisii. Phytochemistry 1988, 27, 2346–2347. [Google Scholar] [CrossRef]
- Bruno, M.; Rosselli, S.; Raccuglia, R.A.; Maggio, A.; Senatore, F.; Arnold, N.A.; Griffin, C.A.; Herz, W. Terpenoids and Flavones from Achillea falcata (Asteraceae). Rev. Soc. Quim. México 2003, 47, 130–131. [Google Scholar]
- Hatam, N.A.R.; Yousif, N.J.; Porzel, A.; Seifert, K. Sesquiterpene lactones from Achillea micrantha. Phytochemistry 1992, 31, 2160–2162. [Google Scholar] [CrossRef]
- Korkmaz, B.; Renda, G.; Erik, İ.; Kılıç, G.; Coşkunçelebi, K.; Yaylı, N. Two new dihydroisocoumarins and terpenoids from Scorzonera longiana Sümbül an endemic species to Turkey and their antimicrobial activity. Nat. Prod. Res. 2023, 37, 1185–1198. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Yoon, C.H.; Sung, Y.S.; Kim, Y.K.; Yun, M.; Kim, S. Total Synthesis of (+)-Cladantholide and (−)-Estafiatin: 5-Exo,7-Endo Radical Cyclization Strategy for the Construction of Guaianolide Skeleton. J. Am. Chem. Soc. 1997, 119, 8391–8392. [Google Scholar] [CrossRef]
- Schall, A.; Reiser, O. Synthesis of Biologically Active Guaianolides with a trans-Annulated Lactone Moiety. Eur. J. Org. Chem. 2008, 14, 2353–2364. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Moharana, S.; Khatun, G.N. Recent advances in the syntheses of guaianolides. Org. Biomol. Chem. 2023, 21, 6652–6670. [Google Scholar] [CrossRef]
- Abd-Alla, H.I.; Shalaby, N.M.; Hamed, M.A.; El-Rigal, N.S.; Al-Ghamdi, S.N.; Bouajila, J. Phytochemical composition, protective and therapeutic effect on gastric ulcer and α-amylase inhibitory activity of Achillea biebersteinii Afan. Arch. Pharmacal Res. 2016, 39, 10–20. [Google Scholar] [CrossRef]
- Bailly, C.; Vergoten, G. Japonicone A and related dimeric sesquiterpene lactones: Molecular targets and mechanisms of anticancer activity. Inflamm. Res. 2022, 71, 267–276. [Google Scholar] [CrossRef]
- Migheli, R.; Virdis, P.; Galleri, G.; Arru, C.; Lostia, G.; Coradduzza, D.; Muroni, M.R.; Pintore, G.; Podda, L.; Fozza, C.; et al. Antineoplastic Properties by Proapoptotic Mechanisms Induction of Inula viscosa and Its Sesquiterpene Lactones Tomentosin and Inuviscolide. Biomedicines 2022, 10, 2739. [Google Scholar] [CrossRef] [PubMed]
- Fadul, E.; Nizamani, A.; Rasheed, S.; Adhikari, A.; Yousuf, S.; Parveen, S.; Gören, N.; Alhazmi, H.A.; Choudhary, M.I.; Khalid, A. Anti-glycating and anti-oxidant compounds from traditionally used anti-diabetic plant Geigeria alata (DC) Oliv. & Hiern. Nat. Prod. Res. 2020, 34, 2456–2464. [Google Scholar] [PubMed]
- Hu, L.H.; Zou, H.B.; Gong, J.X.; Li, H.B.; Yang, L.X.; Cheng, W.; Zhou, C.X.; Bai, H.; Guéritte, F.; Zhao, Y. Synthesis and biological evaluation of a natural ester sintenin and its synthetic analogues. J. Nat. Prod. 2005, 68, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.X.; Zhang, L.J.; Huang, K.X.; Li, X.K.; Hu, L.H.; Wang, X.Y.; Stockigt, J.; Zhao, Y. Antioxidant and neuroprotective effects of synthesized sintenin derivatives. J. Enzym. Inhib. Med. Chem. 2009, 24, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Wichlacz, M.; Daniewski, W.M.; Danikiewicz, W.; Gumulka, M.; Drozdz, B.; Grabarczyk, H. Constituents of Cladanthus Arabicus. Pol. J. Chem. 1994, 68, 2147–2152. [Google Scholar]
- Ebrahim, W.; Aly, A.H.; Mándi, A.; Wray, V.; Essassi el, M.; Ouchbani, T.; Bouhfid, R.; Lin, W.; Proksch, P.; Kurtán, T.; et al. O-heterocyclic embeurekols from Embellisia eureka, an endophyte of Cladanthus arabicus. Chirality 2013, 25, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, W.; Aly, A.H.; Wray, V.; Mándi, A.; Teiten, M.H.; Gaascht, F.; Orlikova, B.; Kassack, M.U.; Lin, W.; Diederich, M.; et al. Embellicines A and B: Absolute configuration and NF-κB transcriptional inhibitory activity. J. Med. Chem. 2013, 56, 2991–2999. [Google Scholar] [CrossRef]
- Özçınar, Ö.; Özgür, T.; Yusufoglu, H.; Kivçak, B.; Bedir, E. Biotransformation of Neoruscogenin by the Endophytic Fungus Alternaria eureka. J. Nat. Prod. 2018, 81, 1357–1367. [Google Scholar] [CrossRef]
- Duman, S.; Ekiz, G.; Yılmaz, S.; Yusufoglu, H.; Ballar Kırmızıbayrak, P.; Bedir, E. Telomerase activators from 20(27)-octanor-cycloastragenol via biotransformation by the fungal endophytes. Bioorg. Chem. 2021, 109, 104708. [Google Scholar] [CrossRef]
- Küçüksolak, M.; Üner, G.; Ballar Kırmızıbayrak, P.; Bedir, E. Neuroprotective metabolites via fungal biotransformation of a novel sapogenin, cyclocephagenol. Sci. Rep. 2022, 12, 18481. [Google Scholar] [CrossRef]
- Ouchbani, T.; Janati Idriss, F.E.; Bouhfid, R.; Proksch, P.; Essassi, E.M. Neonectria Macrodidyma and Embellisia eureka, two novel producers of brefeldin A and 3,4-dihydro-3,4-8-trihydroxy’1[2H]-naphthalenone. J. Maroc. Chim. Hétérocycl. 2012, 11, 23–35. [Google Scholar]
- Gremaud, G.; Tabacchi, R. Relationship between the fungus Ceratocystis fimbriata coffea and the canker disease of the coffee tree. Phytochemistry 1996, 42, 1547–1549. [Google Scholar] [CrossRef]
- Okole, B.N.; Schulz, F.A. Selection of Mycosphaerella fijiensis-resistant cell lines from micro-cross sections of banana and plantain. Plant Cell Rep. 1997, 16, 339–343. [Google Scholar] [CrossRef]
- Ancheeva, E.; Daletos, G.; Proksch, P. Bioactive Secondary Metabolites from Endophytic Fungi. Curr. Med. Chem. 2020, 27, 1836–1854. [Google Scholar] [CrossRef]
- Garg, M.; Chaudhary, S.K.; Goyal, A.; Sarup, P.; Kumari, S.; Garg, N.; Vaid, L.; Shiveena, B. Comprehensive review on therapeutic and phytochemical exploration of diosmetin: A promising moiety. Phytomed. Plus 2022, 2, 100179. [Google Scholar] [CrossRef]
- Gong, X.; Xiong, L.; Caihong, B.; Zhang, B. Diosmetin ameliorate type 2 diabetic mellitus by up-regulating Corynebacterium glutamicum to regulate IRS/PI3K/AKT-mediated glucose metabolism disorder in KK-Ay mice. Phytomedicine 2021, 87, 153582. [Google Scholar] [CrossRef]
- Angamuthu, H.; Ramachandrane, M. Investigations on the structural, vibrational, computational, and molecular docking studies on potential antidiabetic chemical agent Diosmetin. J. Mol. Recogn. 2020, 33, e2819. [Google Scholar] [CrossRef]
- Comakli, V.; Adem, S.; Oztekin, A.; Demirdag, R. Screening inhibitory effects of selected flavonoids on human recombinant aldose reductase enzyme: In vitro and in silico study. Arch. Physiol. Biochem. 2022, 128, 1368–1374. [Google Scholar] [CrossRef]
- Valdés, B. Early botanical exploration of the Maghreb. Flora Mediterr. 2021, 31, 5–18. [Google Scholar]
- Tanji, A.; Ait Lhaj, A. Weeds of barley and wheat in Souss-Massa region. Rev. Maroc. Protect Plants 2010, 1, 11–23. [Google Scholar]
- Ait-Sidi-Brahim, M.; Markouk, M.; Larhsini, M. Chapter 5. Moroccan Medicinal Plants as Anti-infective and Antioxidant Agents. In New Look to Phytomedicine. Advancements in Herbal Products as Novel Drug Leads; Academic Press: Cambridge, MA, USA, 2019; pp. 91–142. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.; Assaggaf, H.; Qasem, A.; El-Shemi, A.G.; Abdallah, E.M.; Mrabti, H.N.; Bouyahya, A. Antioxidant, Antidiabetic, and Antibacterial Potentials and Chemical Composition of Salvia officinalis and Mentha suaveolens Grown Wild in Morocco. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 2844880. [Google Scholar] [CrossRef]
- Han, M.; Lu, Y.; Tao, Y.; Zhang, X.; Dai, C.; Zhang, B.; Xu, H.; Li, J. Luteolin Protects Pancreatic β Cells against Apoptosis through Regulation of Autophagy and ROS Clearance. Pharmaceuticals 2023, 16, 975. [Google Scholar] [CrossRef]
- Shehnaz, S.I.; Roy, A.; Vijayaraghavan, R.; Sivanesan, S.; Pazhanivel, N. Modulation of PPAR-γ, SREBP-1c and inflammatory mediators by luteolin ameliorates β-cell dysfunction and renal damage in a rat model of type-2 diabetes mellitus. Mol. Biol. Rep. 2023, 50, 9129–9142. [Google Scholar] [CrossRef]
- Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med. 2013, 19, 792–800. [Google Scholar] [CrossRef]
- El Alami, A.; Chait, A. Etude de l’alimentation du magot Macaca sylvanus dans le site touristique des cascades d’Ouzoud (Maroc). Rev. Primatol. 2016, 7, 2748. [Google Scholar] [CrossRef]
- Nouri, M.; Gonçalves, F.; Sousa, J.P.; Römbke, J.; Ksibi, M.; Pereira, R.; Haddioui, A. Metal and Phosphorus Uptake by Spontaneous Vegetation in an abandoned iron mine from a Semiarid Area in Center Morocco: Implications for Phytoextraction. Environ. Res. Eng. Manag. 2013, 2, 59–71. [Google Scholar] [CrossRef]
- Harras, N.; Lamarti, A. In Vitro Germination and Plantlet Establishment of Wild Chamomile of Morocco Cladanthus mixtus (L.) Oberpr. and Vogt. Am. J. Plant Sci. 2014, 5, 2623–2632. [Google Scholar] [CrossRef]
- El Hafidi, S.; Ouhssine, M.; Benzakour, A.; Gaboun, F.; Khamar, H.; Bakhy, K.; Homrani Bakali, A. Site effect on seed germination of two species of Cladanthus in Morocco. Afr. Mediterr. Agric. J. 2022, 137, 103–121. [Google Scholar]
- Tambewagh, U.U.; Kandhare, A.D.; Honmore, V.S.; Kadam, P.P.; Khedkar, V.M.; Bodhankar, S.L.; Rojatkar, S.R. Anti-inflammatory and antioxidant potential of Guaianolide isolated from Cyathocline purpurea: Role of COX-2 inhibition. Int. Immunopharmacol. 2017, 52, 110–118. [Google Scholar] [CrossRef]
- Adekenov, S. Syntheses Based on 3,4α-Epoxy-1,5,7α,6β(H)-guai-10(14),11(13)-dien-6,12-olide. Molecules 2022, 27, 1862. [Google Scholar] [CrossRef]
- Hu, Y.; Saito, Y.; Okamoto, Y.; Matsuo, Y.; Gong, X.; Tanaka, T. Chemical Compositions of Eupatorium heterophyllum Leaf Samples from Yunnan and Sichuan Provinces of China-Isolation of 13 New Sesquiterpene Lactones. Molecules 2023, 28, 5107. [Google Scholar] [CrossRef]
- Li, H.; Xu, N.; Li, J.; Aisa, H.A. Guaianolide-type sesquiterpene lactones from Achillea millefolium L. and their anti-inflammatory activity. Phytochemistry 2023, 216, 113894. [Google Scholar] [CrossRef]
- Wen, B.; Hexum, J.K.; Widen, J.C.; Harki, D.A.; Brummond, K.M. A redox economical synthesis of bioactive 6,12-guaianolides. Org. Lett. 2013, 15, 2644–2647. [Google Scholar] [CrossRef]
- Wells, S.M.; Brummond, K.M. Conditions for a Rh(I)-catalyzed [2 + 2 + 1] cycloaddition reaction with methyl substituted allenes and alkynes. Tetrahedron Lett. 2015, 56, 3546–3549. [Google Scholar] [CrossRef]
- He, W.; Lai, R.; Lin, Q.; Huang, Y.; Wang, L. Arglabin is a plant sesquiterpene lactone that exerts potent anticancer effects on human oral squamous cancer cells via mitochondrial apoptosis and downregulation of the mTOR/PI3K/Akt signaling pathway to inhibit tumor growth in vivo. J. BUON 2018, 23, 1679–1685. [Google Scholar]
- El Gaafary, M.; Morad, S.A.F.; Schmiech, M.; Syrovets, T.; Simmet, T. Arglabin, an EGFR receptor tyrosine kinase inhibitor, suppresses proliferation and induces apoptosis in prostate cancer cells. Biomed. Pharmacother. 2022, 156, 113873. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, L.; Wang, J.; Li, W.; Zhou, X.; Zhang, C.; Han, C. Arglabin regulates microglia polarization to relieve neuroinflammation in Alzheimer’s disease. J. Biochem. Mol. Toxicol. 2022, 36, e23045. [Google Scholar] [CrossRef]
- Mahalingam, D.; Peguero, J.; Cen, P.; Arora, S.P.; Sarantopoulos, J.; Rowe, J.; Allgood, V.; Tubb, B.; Campos, L. A Phase II, Multicenter, Single-Arm Study of Mipsagargin (G-202) as a Second-Line Therapy Following Sorafenib for Adult Patients with Progressive Advanced Hepatocellular Carcinoma. Cancers 2019, 11, 833. [Google Scholar] [CrossRef]
- Isaacs, J.T.; Brennen, W.N.; Christensen, S.B.; Denmeade, S.R. Mipsagargin: The Beginning-Not the End-of Thapsigargin Prodrug-Based Cancer Therapeutics. Molecules 2021, 26, 7469. [Google Scholar] [CrossRef]
- Christensen, S.B.; Simonsen, H.T.; Engedal, N.; Nissen, P.; Møller, J.V.; Denmeade, S.R.; Isaacs, J.T. From Plant to Patient: Thapsigargin, a Tool for Understanding Natural Product Chemistry, Total Syntheses, Biosynthesis, Taxonomy, ATPases, Cell Death, and Drug Development. Prog. Chem. Org. Nat. Prod. 2021, 115, 59–114. [Google Scholar]
- Kim, D.Y.; Choi, B.Y. Costunolide-A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential. Int. J. Mol. Sci. 2019, 20, 2926. [Google Scholar] [CrossRef]
- Ávila-Gálvez, M.Á.; Marques, D.; Figueira, I.; Cankar, K.; Bosch, D.; Brito, M.A.; Dos Santos, C.N. Costunolide and parthenolide: Novel blood-brain barrier permeable sesquiterpene lactones to improve barrier tightness. Biomed. Pharmacother. 2023, 167, 115413. [Google Scholar] [CrossRef]
- Zhan, Z.Y.; Zhang, Z.H.; Yang, H.X.; Wu, Y.L.; Nan, J.X.; Lian, L.H. Potential skin health promoting benefits of costunolide: A therapeutic strategy to improve skin inflammation in imiquimod-induced psoriasis. Food Funct. 2023, 14, 2392–2403. [Google Scholar] [CrossRef]
- Wang, P.; Yang, H.; Lin, W.; Zhou, J.; Liu, Y.; Ma, L.; Li, M.; Hu, Y.; Yu, C.; Zhang, Y.; et al. Discovery of Novel Sesquiterpene Lactone Derivatives as Potent PKM2 Activators for the Treatment of Ulcerative Colitis. J. Med. Chem. 2023, 66, 5500–5523. [Google Scholar] [CrossRef]
- El Mihyaoui, A.; Charfi, S.; Erbiai, E.H.; Pereira, M.; Duarte, D.; Vale, N.; Candela Castillo, M.E.; Badoc, A.; Lamarti, A.; Esteves da Silva, J.C.G.; et al. Phytochemical Compounds and Anticancer Activity of Cladanthus mixtus Extracts from Northern Morocco. Cancers 2022, 15, 152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouissane, L.; Bailly, C. The Medicinal Moroccan Plant Cladanthus arabicus as a Prominent Source of Sesquiterpenes Cladantholide and Sintenin. AppliedChem 2024, 4, 15-28. https://doi.org/10.3390/appliedchem4010002
Bouissane L, Bailly C. The Medicinal Moroccan Plant Cladanthus arabicus as a Prominent Source of Sesquiterpenes Cladantholide and Sintenin. AppliedChem. 2024; 4(1):15-28. https://doi.org/10.3390/appliedchem4010002
Chicago/Turabian StyleBouissane, Latifa, and Christian Bailly. 2024. "The Medicinal Moroccan Plant Cladanthus arabicus as a Prominent Source of Sesquiterpenes Cladantholide and Sintenin" AppliedChem 4, no. 1: 15-28. https://doi.org/10.3390/appliedchem4010002
APA StyleBouissane, L., & Bailly, C. (2024). The Medicinal Moroccan Plant Cladanthus arabicus as a Prominent Source of Sesquiterpenes Cladantholide and Sintenin. AppliedChem, 4(1), 15-28. https://doi.org/10.3390/appliedchem4010002