Atmospheric Plasma Sources as Potential Tools for Surface and Hand Disinfection
Abstract
:1. Introduction
1.1. Hand Hygiene
1.2. Cold Atmospheric Plasma for Hand Disinfection
2. Materials and Methods
2.1. Plasma Source and Design
2.2. Microbiological Testing
2.3. Microbial Cultures
2.4. Pre-Assays Using Petri Dishes
2.5. Disinfection Assays Using Steel and Silicone Disks
3. Results
3.1. Plasma Source and Design
3.2. Pre-Assays
3.2.1. The Influence of Dying on Culture Viability
3.2.2. DC Plasma Assays
3.3. Disinfection Assays Using RF AIR CAP
4. Discussion
4.1. RF Plasma Mechanism of Inactivation
4.2. Plasma Integration into a Hand Dryer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villa, C.; Russo, E. Hydrogels in Hand Sanitizers. Materials 2021, 14, 1577. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, R.E.; Gutierrez, D.; Peters, C.; Nichols, M.; Boles, B.R. Elucidation of bacteria found in car interiors and strategies to reduce the presence of potential pathogens. Biofouling 2014, 30, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P. Hand hygiene: Back to the basics of infection control. Indian. J. Med. Res. 2011, 134, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, C.; Avraam, D.; Cueto-Felgueroso, L.; González, M.C.; Juanes, R. Hand-Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network. Risk Anal. 2020, 40, 723–740. [Google Scholar] [CrossRef]
- Price, L.; Gozdzielewska, L.; Alejandre, J.C.; Stewart, E.; Pittet, D.; Reilly, J. Systematic review on factors influencing the effectiveness of alcohol-based hand rubbing in healthcare. Antimicrob. Resist. Infect. Control 2022, 11, 16. [Google Scholar] [CrossRef]
- Breidablik, H.J.; Johannessen, L.; Andersen, J.R.; Søreide, H.; Kleiven, O.T. Effect of Optimal Alcohol-Based Hand Rub among Nurse Students Compared with Everyday Practice among Random Adults; Can Water-Based Hand Rub Combined with a Hand Dryer Machine Be an Alternative to Remove E. coli Contamination from Hands? Microorganisms 2023, 11, 325. [Google Scholar] [CrossRef]
- Plum, F.; Yüksel, Y.T.; Agner, T.; Nørreslet, L.B. Skin barrier function after repeated short-term application of alcohol-based hand rub following intervention with water immersion or occlusion. Contact Dermat. 2020, 83, 215–219. [Google Scholar] [CrossRef]
- Kivuti-Bitok, L.W.; Chepchirchir, A.; Waithaka, P.; Ngune, I. Dry Taps? A Synthesis of Alternative “Wash” Methods in the Absence of Water and Sanitizers in the Prevention of Coronavirus in Low-Resource Settings. J. Prim. Care Community Health 2020, 11, 2150132720936858. [Google Scholar] [CrossRef]
- Moura, I.B.; Ewin, D.; Wilcox, M.H. From the hospital toilet to the ward: A pilot study on microbe dispersal to multiple hospital surfaces following hand drying using a jet air dryer versus paper towels. Infect. Control Hosp. Epidemiol. 2022, 43, 241–244. [Google Scholar] [CrossRef]
- Menashi, W.P. Treatment of Surfaces. U.S. Patent US3383163 A, 14 May 1968. [Google Scholar]
- Laroussi, M.; Bekeschus, S.; Keidar, M.; Bogaerts, A.; Fridman, A.; Lu, X.P.; Ostrikov, K.; Hori, M.; Stapelmann, K.; Miller, V.; et al. Low-temperature plasma for biology, hygiene, and medicine: Perspective and roadmap. arXiv 2022, arXiv:2108.03158. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Biology and Plasma Medicine. In Plasma Chemistry Cambridge; Fridman, A., Ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 848–914. [Google Scholar] [CrossRef]
- Busco, G.; Robert, E.; Chettouh-Hammas, N.; Pouvesle, J.M.; Grillon, C. The emerging potential of cold atmospheric plasma in skin biology. Free Radic. Biol. Med. 2020, 161, 290–304. [Google Scholar] [CrossRef] [PubMed]
- Osman, I.; Ponukumati, A.; Vargas, M.; Bahkta, D.; Ozoglu, B.; Bailey, C. Plasma-activated vapor for sanitization of hands. Plasma Med. 2016, 6, 3–4. [Google Scholar] [CrossRef]
- Deng, X.L.; Nikiforov, A.Y.; Vanraes, P.; Leys, C. Direct current plasma jet at atmospheric pressure operating in nitrogen and air. J. Appl. Phys. 2013, 113, 023305. [Google Scholar] [CrossRef]
- Kassir, A.M.; Sonnard, J.; Roulin, L.; Baudin, M.; Courret, G.; Brück, W.M. Fast Prototyping for Atmospheric Plasma Sources Integration into Air Hand Dryers. Int. J. Chem. Mol. Eng. 2022, 16, 2022. [Google Scholar]
- Qian, M.Y.; Ren, C.S.; Wang, D.Z.; Fan, Q.-Q.; Nie, Q.-Y.; Wen, X.-Q.; Zhang, J.-L. Investigations on an atmospheric dielectric barrier discharge plasma jet with a concentric wire-mesh cylinder electrode configuration. IEEE Trans. Plasma Sci. 2011, 40, 1134–1141. [Google Scholar] [CrossRef]
- Laroussi, M. Plasma medicine: A brief introduction. Plasma 2018, 1, 47–60. [Google Scholar] [CrossRef]
- Chen, Z.; Garcia, G., Jr.; Arumugaswami, V.; Wirz, R.E. Cold atmospheric plasma for SARS-CoV-2 inactivation. Phys. Fluids 2020, 32, 111702. [Google Scholar] [CrossRef]
- EN 13697:2015+A1:2019; Chemical Disinfectants and Antiseptics, Quantitative Non-Porous Surface Test for the Evaluation of Bactericidal and/or Fungicidal Activity of Chemical Disinfectants Used in Food, Industrial, Domestic and Institutional Areas (Phase 2/Step 2). 2019. Available online: https://connect.snv.ch/en/ (accessed on 4 August 2021).
- Nachman, M.; Franklin, S.E. Artificial Skin Model simulating dry and moist in vivo human skin friction and deformation behaviour. Tribol. Int. 2016, 97, 431–439. [Google Scholar] [CrossRef]
- Franklin, S.E.; Baranowska, J.; Furgala, J. Friction of natural human, procine and synthetic skin. In Proceedings of the 5th International Conference on Mechanics of Biomaterials and Tissues, Sitges, Spain, 8–12 December 2013. [Google Scholar]
- Chen, Z.; Wirz, R. Cold Atmospheric Plasma for COVID-19. Preprints 2020, 2020040126. [Google Scholar] [CrossRef]
- Suva. Valeurs Limites d’Exposition aux Postes de Travail. Available online: www.suva.ch/1903.f (accessed on 4 February 2021).
- Defrin, R.; Shachal-Shiffer, M.; Hadgadg, M.; Peretz, C. Quantitative Somatosensory Testing of Warm and Heat-Pain Thresholds: The Effect of Body Region and Testing Method. Clin. J. Pain. 2006, 22, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, X.; Huang, Y.; Cheng, L.; Ren, B. Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects. Front. Microbiol. 2021, 11, 622534. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, R.; Tang, Z.; Liu, W.; He, C.; Xia, D. Reactive Nitrogen Species Mediated Inactivation of Pathogenic Microorganisms during UVA Photolysis of Nitrite at Surface Water Levels. Env. Sci. Technol. 2022, 56, 12542–12552. [Google Scholar] [CrossRef]
- Waskow, A.; Betschart, J.; Butscher, D.; Oberbossel, G.; Klöti, D.; Büttner-Mainik, A.; Adamcik, J.; von Rohr, P.R.; Schuppler, M. Characterization of Efficiency and Mechanisms of Cold Atmospheric Pressure Plasma Decontamination of Seeds for Sprout Production. Front. Microbiol. 2018, 9, 3164. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, T.; Zou, L.; Wang, X.; Zhang, Y. Molecular dynamics simulations of membrane properties affected by plasma ROS based on the GROMOS force field. Biophys. Chem. 2019, 253, 106214. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, A.G.; Kristof, J.; Blajan, M.; Mustafa, F.; Shimizu, K. Effect of Plasma Discharge on Epidermal Layer Structure in Pig Skin. Plasma Med. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Appl. Sci. 2021, 11, 4809. [Google Scholar] [CrossRef]
Silicone Discs | Stainless Steel Discs | |||||||
---|---|---|---|---|---|---|---|---|
RF Power (W) | E. coli DSM682 | S. epiderminis DSM20044 | E. coli DSM682 | S. epiderminis DSM20044 | ||||
Log10 cfu/ Disk ± SD | Log10 Reduction | Log10 cfu/ Disk ± SD | Log10 Reduction | Log10 cfu/ Disk ± SD | Log10 Reduction | Log10 cfu/ Disk ± SD | Log10 Reduction | |
Negative contol | 6.06 ± 0.233 | 6.37 ± 0.162 | 6.12 ± 0.113 | 6.56 ± 0.127 | ||||
50 | 5.65 ± 0.092 | 0.41 | 6.09 ± 0.190 | 0.28 | 5.98 ± 0.283 | 0.14 | 5.98 ± 0.148 | 0.58 |
50 | 5.58 ± 0.184 | 0.48 | 6.19 ± 0.141 | 0.18 | 5.57 ± 0.001 | 0.55 | 6.04 ± 0.007 | 0.52 |
Average | 0.45 | 0.23 | 0.35 | 0.55 | ||||
90 | 5.09 ± 0.360 | 0.97 | 5.67 ± 0.162 | 0.7 | 4.99 ± 0.389 | 1.13 | 5.46 ± 0.071 | 1.1 |
90 | 4.97 ± 0.360 | 1.09 | 5.60 ± 0.311 | 0.77 | 5.14 ± 0.120 | 0.98 | 5.31 ± 0.042 | 1.25 |
Average | 1.03 | 0.74 | 1.05 | 1.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brück, W.M.; Savary, A.; Baudin, M.; Emery Mabillard, M.; Courret, G. Atmospheric Plasma Sources as Potential Tools for Surface and Hand Disinfection. Hygiene 2023, 3, 406-415. https://doi.org/10.3390/hygiene3040030
Brück WM, Savary A, Baudin M, Emery Mabillard M, Courret G. Atmospheric Plasma Sources as Potential Tools for Surface and Hand Disinfection. Hygiene. 2023; 3(4):406-415. https://doi.org/10.3390/hygiene3040030
Chicago/Turabian StyleBrück, Wolfram M., Alain Savary, Martine Baudin, Martine Emery Mabillard, and Gilles Courret. 2023. "Atmospheric Plasma Sources as Potential Tools for Surface and Hand Disinfection" Hygiene 3, no. 4: 406-415. https://doi.org/10.3390/hygiene3040030
APA StyleBrück, W. M., Savary, A., Baudin, M., Emery Mabillard, M., & Courret, G. (2023). Atmospheric Plasma Sources as Potential Tools for Surface and Hand Disinfection. Hygiene, 3(4), 406-415. https://doi.org/10.3390/hygiene3040030