Previous Issue
Volume 5, June
 
 

Network, Volume 5, Issue 3 (September 2025) – 15 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 537 KB  
Article
Efficient, Scalable, and Secure Network Monitoring Platform: Self-Contained Solution for Future SMEs
by Alfred Stephen Tonge, Babu Kaji Baniya and Deepak GC
Network 2025, 5(3), 36; https://doi.org/10.3390/network5030036 - 10 Sep 2025
Viewed by 118
Abstract
In this paper, we introduce a novel, self-hosted Syslog collection platform designed specifically to address the challenges that small and medium enterprises (SMEs) face in implementing comprehensive syslog monitoring solutions. Our analysis begins with an assessment of current network observability practices, evaluating enterprise [...] Read more.
In this paper, we introduce a novel, self-hosted Syslog collection platform designed specifically to address the challenges that small and medium enterprises (SMEs) face in implementing comprehensive syslog monitoring solutions. Our analysis begins with an assessment of current network observability practices, evaluating enterprise solutions, on-premises systems, and Software as a Service (SaaS) offerings to identify features crucial for SME environments. The proposed platform represents an advancement in the field through the incorporation of modern practices, including GitOps and continuous integration and continuous delivery/deployment (CI/CD), and its implementation onto a self-managed Kubernetes platform, which is an approach not commonly explored in SME-focused solutions. We will explore its scalability by leveraging dynamic templates, which allow us to select the number and type of nodes when deploying networks of various sizes. This architecture ensures organisations can deploy a pre-designed, scalable network monitoring solution without extensive external support. The resilience of the proposed platform is assessed by providing empirical evidence of the scaling performance and reliability under various failure scenarios, including node failure and high network throughput stress. Full article
(This article belongs to the Special Issue Advanced Technologies in Network and Service Management, 2nd Edition)
Show Figures

Figure 1

20 pages, 3199 KB  
Article
When Robust Isn’t Resilient: Quantifying Budget-Driven Trade-Offs in Connectivity Cascades with Concurrent Self-Healing
by Waseem Al Aqqad
Network 2025, 5(3), 35; https://doi.org/10.3390/network5030035 - 3 Sep 2025
Viewed by 255
Abstract
Cascading link failures continue to imperil power grids, transport networks, and cyber-physical systems, yet the relationship between a network’s robustness at the moment of attack and its subsequent resiliency remains poorly understood. We introduce a dynamic framework in which connectivity-based cascades and distributed [...] Read more.
Cascading link failures continue to imperil power grids, transport networks, and cyber-physical systems, yet the relationship between a network’s robustness at the moment of attack and its subsequent resiliency remains poorly understood. We introduce a dynamic framework in which connectivity-based cascades and distributed self-healing act concurrently within each time-step. Failure is triggered when a node’s active-neighbor ratio falls below a threshold φ; healing activates once the global fraction of inactive nodes exceeds trigger T and is limited by budget B. Two real data sets—a 332-node U.S. airport graph and a 1133-node university e-mail graph—serve as testbeds. For each graph we sweep the parameter quartet (φ,B,T,attackmode) and record (i) immediate robustness R, (ii) 90% recovery time T90, and (iii) cumulative average damage. Results show that targeted hub removal is up to three times more damaging than random failure, but that prompt healing with B0.12 can halve T90. Scatter-plot analysis reveals a non-monotonic correlation: high-R states recover quickly only when B and T are favorable, whereas low-R states can rebound rapidly under ample budgets. A multiplicative fit T90Bβg(T)h(R) (with β1) captures these interactions. The findings demonstrate that structural hardening alone cannot guarantee fast recovery; resource-aware, early-triggered self-healing is the decisive factor. The proposed model and data-driven insights provide a quantitative basis for designing infrastructure that is both robust to failure and resilient in restoration. Full article
Show Figures

Figure 1

40 pages, 839 KB  
Review
Unlocking Blockchain’s Potential in Supply Chain Management: A Review of Challenges, Applications, and Emerging Solutions
by Mahafuja Khatun and Tasneem Darwish
Network 2025, 5(3), 34; https://doi.org/10.3390/network5030034 - 26 Aug 2025
Viewed by 1886
Abstract
Blockchain’s decentralized, immutable, and transparent nature offers a promising solution to enhance security, trust, and efficiency in supply chains. While integrating blockchain into the SCM process poses significant challenges, including technical, operational, and regulatory issues, this review analyzes blockchain’s potential in SCM with [...] Read more.
Blockchain’s decentralized, immutable, and transparent nature offers a promising solution to enhance security, trust, and efficiency in supply chains. While integrating blockchain into the SCM process poses significant challenges, including technical, operational, and regulatory issues, this review analyzes blockchain’s potential in SCM with a focus on the key challenges encountered when applying blockchain in this domain—such as scalability limitations, interoperability barriers, high implementation costs, and privacy as well as data security concerns. The key contributions are as follows: (1) applications of blockchain across major SCM domains—including pharmaceuticals, healthcare, logistics, and agri-food; (2) SCM functions that benefit from blockchain integration; (3) how blockchain’s properties is reshaping modern SCM processes; (4) the challenges faced by businesses while integrating blockchain into supply chains; (5) a critical evaluation of existing solutions and their limitations, categorized into three main domains; (6) unresolved issues highlighted in dedicated “Critical Issues to Consider” sections; (7) synergies with big data, IoT, and AI for secure and intelligent supply chains, along with challenges of emerging solutions; and (8) unexplored domains for blockchain in SCM. By synthesizing current research and industry insights, this study offers practical guidance and outlines future directions for building scalable and resilient global trade networks. Full article
Show Figures

Figure 1

11 pages, 5568 KB  
Article
A Multiple-Input Multiple-Output Transmission System Employing Orbital Angular Momentum Multiplexing for Wireless Backhaul Applications
by Afkar Mohamed Ismail, Yufei Zhao and Gaohua Ju
Network 2025, 5(3), 33; https://doi.org/10.3390/network5030033 - 25 Aug 2025
Viewed by 392
Abstract
This paper presents a long-range experimental demonstration of multi-mode multiple-input multiple-output (MIMO) transmission using orbital angular momentum (OAM) waves for Line-of-Sight (LoS) wireless backhaul applications. A 4 × 4 MIMO system employing distinct OAM modes is implemented and shown to support multiplexing data [...] Read more.
This paper presents a long-range experimental demonstration of multi-mode multiple-input multiple-output (MIMO) transmission using orbital angular momentum (OAM) waves for Line-of-Sight (LoS) wireless backhaul applications. A 4 × 4 MIMO system employing distinct OAM modes is implemented and shown to support multiplexing data transmission over a single frequency band without inter-channel interference. In contrast, a 2 × 2 plane wave MIMO configuration fails to achieve reliable demodulation due to mutual interference, underscoring the spatial limitations of conventional waveforms. The results confirm that OAM provides spatial orthogonality suitable for high-capacity, frequency-efficient wireless backhaul links. Experimental validation is conducted over an 100 m outdoor path, demonstrating the feasibility of OAM-based MIMO in practical wireless backhaul scenarios. Full article
(This article belongs to the Special Issue Advances in Wireless Communications and Networks)
Show Figures

Figure 1

21 pages, 2309 KB  
Review
A Comprehensive Review of Satellite Orbital Placement and Coverage Optimization for Low Earth Orbit Satellite Networks: Challenges and Solutions
by Adel A. Ahmed
Network 2025, 5(3), 32; https://doi.org/10.3390/network5030032 - 20 Aug 2025
Viewed by 875
Abstract
Nowadays, internet connectivity suffers from instability and slowness due to optical fiber cable attacks across the seas and oceans. The optimal solution to this problem is using the Low Earth Orbit (LEO) satellite network, which can resolve the problem of internet connectivity and [...] Read more.
Nowadays, internet connectivity suffers from instability and slowness due to optical fiber cable attacks across the seas and oceans. The optimal solution to this problem is using the Low Earth Orbit (LEO) satellite network, which can resolve the problem of internet connectivity and reachability, and it has the power to bring real-time, reliable, low-latency, high-bandwidth, cost-effective internet access to many urban and rural areas in any region of the Earth. However, satellite orbital placement (SOP) and navigation should be carefully designed to reduce signal impairments. The challenges of orbital satellite placement for LEO include constellation development, satellite parameter optimization, bandwidth optimization, consideration of signal impairment, and coverage optimization. This paper presents a comprehensive review of SOP and coverage optimization, examines prevalent issues affecting LEO internet connectivity, evaluates existing solutions, and proposes novel solutions to address these challenges. Furthermore, it recommends a machine learning solution for coverage optimization and SOP that can be used to efficiently enhance internet reliability and reachability for LEO satellite networks. This survey will open the gate for developing an optimal solution for global internet connectivity and reachability. Full article
Show Figures

Figure 1

1 pages, 124 KB  
Correction
Correction: Saxena, U.R.; Kadel, R. RACHEIM: Reinforced Reliable Computing in Cloud by Ensuring Restricted Access Control. Network 2025, 5, 19
by Urvashi Rahul Saxena and Rajan Kadel
Network 2025, 5(3), 31; https://doi.org/10.3390/network5030031 - 19 Aug 2025
Viewed by 163
Abstract
In the original publication [...] Full article
28 pages, 2462 KB  
Article
A Service Recommendation Model in Cloud Environment Based on Trusted Graph-Based Collaborative Filtering Recommender System
by Urvashi Rahul Saxena, Yogita Khatri, Rajan Kadel and Samar Shailendra
Network 2025, 5(3), 30; https://doi.org/10.3390/network5030030 - 13 Aug 2025
Viewed by 363
Abstract
Cloud computing has increasingly adopted multi-tenant infrastructures to enhance cost efficiency and resource utilization by enabling the shared use of computational resources. However, this shared model introduces several security and privacy concerns, including unauthorized access, data redundancy, and susceptibility to malicious activities. In [...] Read more.
Cloud computing has increasingly adopted multi-tenant infrastructures to enhance cost efficiency and resource utilization by enabling the shared use of computational resources. However, this shared model introduces several security and privacy concerns, including unauthorized access, data redundancy, and susceptibility to malicious activities. In such environments, the effectiveness of cloud-based recommendation systems largely depends on the trustworthiness of participating nodes. Traditional collaborative filtering techniques often suffer from limitations such as data sparsity and the cold-start problem, which significantly degrade rating prediction accuracy. To address these challenges, this study proposes a Trusted Graph-Based Collaborative Filtering Recommender System (TGBCF). The model integrates graph-based trust relationships with collaborative filtering to construct a trust-aware user network capable of generating reliable service recommendations. Each node’s reliability is quantitatively assessed using a trust metric, thereby improving both the accuracy and robustness of the recommendation process. Simulation results show that TGBCF achieves a rating prediction accuracy of 93%, outperforming the baseline collaborative filtering approach (82%). Moreover, the model reduces the influence of malicious nodes by 40–60%, demonstrating its applicability in dynamic and security-sensitive cloud service environments. Full article
Show Figures

Figure 1

13 pages, 484 KB  
Article
Encrypted Client Hello Is Coming: A View from Passive Measurements
by Gabriele Merlach, Martino Trevisan and Danilo Giordano
Network 2025, 5(3), 29; https://doi.org/10.3390/network5030029 - 8 Aug 2025
Viewed by 945
Abstract
The Encrypted Client Hello (ECH) extension to Transport Layer Security (TLS) and the new type of Domain Name System (DNS) records called HTTPS represent the latest efforts to improve user privacy by encrypting the server’s domain name during the TLS handshake. While prior [...] Read more.
The Encrypted Client Hello (ECH) extension to Transport Layer Security (TLS) and the new type of Domain Name System (DNS) records called HTTPS represent the latest efforts to improve user privacy by encrypting the server’s domain name during the TLS handshake. While prior studies have assessed ECH adoption from the server perspective, little is known about its usage in the wild from a passive network standpoint. In this paper, we present the first passive analysis of ECH and HTTPS DNS adoption using a month-long dataset collected from an operational network. We find that HTTPS DNS queries already make up approximately 8% of total DNS traffic, although responses to those queries are often incomplete, leading to increased query volume. Furthermore, 59% of QUIC flows include ECH, although only a negligible fraction is directed to servers supporting it. The remaining ECH flows are composed of GREASE values, intended to prevent protocol ossification. Our findings provide new insights into the current state and challenges in deploying privacy-enhancing protocols at scale. Full article
Show Figures

Figure 1

24 pages, 3366 KB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Viewed by 441
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
Show Figures

Figure 1

15 pages, 753 KB  
Article
A Novel Cloud Energy Consumption Heuristic Based on a Network Slicing–Ring Fencing Ratio
by Vinay Sriram Iyer, Yasantha Samarawickrama and Giovani Estrada
Network 2025, 5(3), 27; https://doi.org/10.3390/network5030027 - 25 Jul 2025
Viewed by 343
Abstract
The widespread adoption of cloud computing has amplified the demand for electric power. It is strategically important to address the limitations of reliable sources and sustainability of power. Research and investment in data centres and power infrastructure are therefore critically important for our [...] Read more.
The widespread adoption of cloud computing has amplified the demand for electric power. It is strategically important to address the limitations of reliable sources and sustainability of power. Research and investment in data centres and power infrastructure are therefore critically important for our digital economy. A novel heuristic for the minimisation of energy consumption in cloud computing is presented. It draws similarities to the concept of “network slices”, in which an orchestrator enables multiplexing to reduce the network “churn” often associated with significant losses of energy consumption. The novel network slicing–ring fencing ratio is a heuristic calculated through an iterative procedure for the reduction in cloud energy consumption. Simulation results show how the non-convex equation optimises power by reducing energy from 10,680 kJ to 912 kJ, which is a 91.46% efficiency gain. In comparison, the Heuristic AUGMENT Non-Convex algorithm (HA-NC, by Hossain and Ansari) reported a 312.74% increase in energy consumption from 2464 kJ to 10,168 kJ, while the Priority Selection Offloading algorithm (PSO, by Anajemba et al.) also reported a 150% increase in energy consumption, from 10,738 kJ to 26,845 kJ. The proposed network slicing–ring fencing ratio is seen to successfully balance energy consumption and computing performance. We therefore think the novel approach could be of interest to network architects and cloud operators. Full article
Show Figures

Figure 1

23 pages, 1885 KB  
Article
Applying Machine Learning to DEEC Protocol: Improved Cluster Formation in Wireless Sensor Networks
by Abdulla Juwaied and Lidia Jackowska-Strumillo
Network 2025, 5(3), 26; https://doi.org/10.3390/network5030026 - 24 Jul 2025
Viewed by 358
Abstract
Wireless Sensor Networks (WSNs) are specialised ad hoc networks composed of small, low-power, and often battery-operated sensor nodes with various sensors and wireless communication capabilities. These nodes collaborate to monitor and collect data from the physical environment, transmitting it to a central location [...] Read more.
Wireless Sensor Networks (WSNs) are specialised ad hoc networks composed of small, low-power, and often battery-operated sensor nodes with various sensors and wireless communication capabilities. These nodes collaborate to monitor and collect data from the physical environment, transmitting it to a central location or sink node for further processing and analysis. This study proposes two machine learning-based enhancements to the DEEC protocol for Wireless Sensor Networks (WSNs) by integrating the K-Nearest Neighbours (K-NN) and K-Means (K-M) machine learning (ML) algorithms. The Distributed Energy-Efficient Clustering with K-NN (DEEC-KNN) and with K-Means (DEEC-KM) approaches dynamically optimize cluster head selection to improve energy efficiency and network lifetime. These methods are validated through extensive simulations, demonstrating up to 110% improvement in packet delivery and significant gains in network stability compared with the original DEEC protocol. The adaptive clustering enabled by K-NN and K-Means is particularly effective for large-scale and dynamic WSN deployments where node failures and topology changes are frequent. These findings suggest that integrating ML with clustering protocols is a promising direction for future WSN design. Full article
Show Figures

Figure 1

23 pages, 5644 KB  
Article
Exploring the Performance of Transparent 5G NTN Architectures Based on Operational Mega-Constellations
by Oscar Baselga, Anna Calveras and Joan Adrià Ruiz-de-Azua
Network 2025, 5(3), 25; https://doi.org/10.3390/network5030025 - 18 Jul 2025
Viewed by 756
Abstract
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between [...] Read more.
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between mobile network operators and satellite providers, allowing the former to leverage mature space infrastructure and the latter to integrate with terrestrial mobile standards. However, integrating these technologies presents significant architectural challenges. This study investigates 5G NTN architectures using satellite mega-constellations, focusing on transparent architectures where Starlink is employed to relay the backhaul, midhaul, and new radio (NR) links. The performance of these architectures is assessed through a testbed utilizing OpenAirInterface (OAI) and Open5GS, which collects key user-experience metrics such as round-trip time (RTT) and jitter when pinging the User Plane Function (UPF) in the 5G core (5GC). Results show that backhaul and midhaul relays maintain delays of 50–60 ms, while NR relays incur delays exceeding one second due to traffic overload introduced by the RFSimulator tool, which is indispensable to transmit the NR signal over Starlink. These findings suggest that while transparent architectures provide valuable insights and utility, regenerative architectures are essential for addressing current time issues and fully realizing the capabilities of space-based broadband services. Full article
Show Figures

Figure 1

22 pages, 6369 KB  
Review
Architectural Design for Digital Twin Networks
by Jorg Wieme, Mathias Baert and Jeroen Hoebeke
Network 2025, 5(3), 24; https://doi.org/10.3390/network5030024 - 9 Jul 2025
Viewed by 546
Abstract
Digital Twin Networks are advanced digital replicas of physical network infrastructures, offering real-time monitoring, analysis, and optimization capabilities. Despite their potential, the absence of a standardized definition and implementation guidelines complicates practical deployment. The existing literature often lacks clarity on tool selection and [...] Read more.
Digital Twin Networks are advanced digital replicas of physical network infrastructures, offering real-time monitoring, analysis, and optimization capabilities. Despite their potential, the absence of a standardized definition and implementation guidelines complicates practical deployment. The existing literature often lacks clarity on tool selection and implementation specifics. In response, this paper aims to address these challenges by providing a complete guide and reference list of essential tools to implement Digital Twin Networks. Following the current research and work-in-progress from the definition initiative, including our own contributions, we propose a structured approach to Digital Twin Network implementation. Our methodology integrates insights from diverse sources to establish a coherent framework for developers and researchers. By synthesizing insights from the literature and practical experience, we define key components and functionalities critical to Digital Twin Network architecture. Additionally, we highlight challenges inherent to Digital Twin Network implementation and offer strategic approaches and mindsets for addressing them. This includes considerations for scalability, interoperability, real-time communication, data modeling, and security, ensuring a holistic approach to building effective Digital Twin Network systems. Full article
Show Figures

Figure 1

22 pages, 1695 KB  
Systematic Review
IoT Applications in Agriculture and Environment: A Systematic Review Based on Bibliometric Study in West Africa
by Michel Dossou, Steaven Chédé, Anne-Carole Honfoga, Marianne Balogoun, Péniel Dassi and François Rottenberg
Network 2025, 5(3), 23; https://doi.org/10.3390/network5030023 - 2 Jul 2025
Viewed by 709
Abstract
The Internet of Things (IoT) is an upcoming technology that is increasingly being used for monitoring and analysing environmental parameters and supports the progress of farm machinery. Agriculture is the main source of living for many people, including, for instance, farmers, agronomists and [...] Read more.
The Internet of Things (IoT) is an upcoming technology that is increasingly being used for monitoring and analysing environmental parameters and supports the progress of farm machinery. Agriculture is the main source of living for many people, including, for instance, farmers, agronomists and transporters. It can raise incomes, improve food security and benefit the environment. However, food systems are responsible for many environmental problems. While the use of IoT in agriculture and environment is widely deployed in many developed countries, it is underdeveloped in Africa, particularly in West Africa. This paper aims to provide a systematic review on this technology adoption for agriculture and environment in West African countries. To achieve this goal, the analysis of scientific contributions is performed by performing first a bibliometric study, focusing on the selected articles obtained using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method, and second a qualitative study. The PRISMA analysis was performed based on 226 publications recorded from one database: Web Of Science (WoS). It has been demonstrated that the annual scientific production significantly increased during this last decade. Our conclusions highlight promising directions where IoT could significantly progress sustainability. Full article
(This article belongs to the Special Issue Advanced Technologies in Network and Service Management)
Show Figures

Figure 1

13 pages, 8706 KB  
Article
Experimental Studies on Low-Latency RIS Beam Tracking: Edge-Integrated and Visually Steered
by Zekai Wang and Yuming Nie
Network 2025, 5(3), 22; https://doi.org/10.3390/network5030022 - 1 Jul 2025
Viewed by 432
Abstract
In this study, to address the problems of high feedback latency and redundant codebook traversal in traditional Reconfigurable Intelligent Surface (RIS) beam tracking systems, two novel experimental schemes are proposed: the Edge-Integrated RIS Control Mechanism (EIR-CM) and the Visually Steered RIS Control Mechanism [...] Read more.
In this study, to address the problems of high feedback latency and redundant codebook traversal in traditional Reconfigurable Intelligent Surface (RIS) beam tracking systems, two novel experimental schemes are proposed: the Edge-Integrated RIS Control Mechanism (EIR-CM) and the Visually Steered RIS Control Mechanism (VSR-CM). The EIR-CM eliminates the feedback latency of the remote server and optimizes the local computation by integrating the RIS control system and the User Equipment (UE) into the same edge server to reduce the beam tuning time by 50%. The VSR-CM realizes beam tracking based on visual perception, and directly maps the UE position to the optimal RIS codebook with a response speed as low as milliseconds. Experimental results show that the EIR-CM reduces the RIS feedback latency to 1–2 s, and the VSR-CM can be further optimized to less than 0.5 s. The two mechanisms are applicable to 6G communications, smart transport, and drone networks, providing feasibility verification for low-latency and efficient RIS deployment. Full article
(This article belongs to the Special Issue Advances in Wireless Communications and Networks)
Show Figures

Figure 1

Previous Issue
Back to TopTop