Communication Network Standards for Smart Grid Infrastructures
Abstract
:1. Introduction
- Interoperability: The architecture of smart grids and their components, both in terms of hardware and software, and refers to their ability to interact directly with each other. This allows easy and efficient exchange of information without disturbing the end user.
- Interconnectivity: The ability to communicate through all available means of participants in the energy ecosystem (stations, substations, machines, devices, sensors, applications, and people).
- Classified access to information: The provision of easy and instant access to useful information, to and from all points of the energy process.
- System monitoring: The cyber-physical systems that support all processes, collecting and visualizing information in almost real-time.
- Decentralized decision-making: The cyber-physical systems that usually take optimal decisions autonomously. A hierarchically higher level usually intervenes only in cases of conflicting objectives.
2. Network Standards That Support Communication in Smart Grid Infrastructures
2.1. Smart Transmission Systems
2.2. Blackout Prevention Management
2.3. Advanced Distribution Management
2.4. Distribution Automation
2.5. Smart Substation Automation
2.6. Distributed Energy Resources
2.7. Advanced Metering Infrastructure
2.8. Smart Metering
2.9. Demand Response/Load Management
2.10. Smart Home and Building Automation
2.11. Electric Storage
2.12. E–Mobility
2.13. Condition Monitoring
2.14. Renewable Energy Generation
- Wind energy (control, certification, wind-generator design requirements, measurement, and evaluation of generated energy, etc.).
- Solar energy (testing, certification, interconnection, protection of photovoltaic systems, measurement, and evaluation of produced energy, etc.).
- Marine power (design requirements for marine energy systems, wave performance evaluation, energy converters, etc.).
- Fuel cells (safety of fuel cell power generation systems, fuel efficiency and testing, etc.).
- Pumped storage (hydraulic turbine tests, storage pumps, etc.).
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Halder, T. A smart grid. In Proceedings of the 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, 5–7 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Annaswamy, A. IEEE Vision for Smart Grid Control: 2030 and Beyond Roadmap; IEEE: Piscataway, NJ, USA, 2013; pp. 1–12. [Google Scholar] [CrossRef]
- Chen, K.-C.; Yeh, P.-C.; Hsieh, H.-Y.; Chang, S.-C. Communication infrastructure of smart grid. In Proceedings of the 2010 4th International Symposium on Communications, Control and Signal Processing (ISCCSP), Limassol, Cyprus, 3–5 March 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, Y.; Gao, Z.; Wang, H. Summary of smart metering and smart grid communication. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 300–304. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, Y.; Wang, X. Strategy and coordinated development of strong and smart grid. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Tianjin, China, 21–24 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- International Energy Agency. Technology Roadmap: Smart Grids; OECD Publishing: Paris, France, 2011. [Google Scholar] [CrossRef]
- Gopstein, A.; Nguyen, C.; O’Fallon, C.; Hastings, N.; Wollman, D. NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 4.0. February 2021. Available online: https://www.nist.gov/publications/nist-framework-and-roadmap-smart-grid-interoperability-standards-release-40 (accessed on 30 May 2021).
- Banafa, A. 2 The Industrial Internet of Things (IIoT): Challenges, Requirements and Benefits. In Secure and Smart Internet of Things (IoT): Using Blockchain and AI; River Publishers: Gistrup, Denmark, 2018; pp. 7–12. Available online: https://ieeexplore.ieee.org/document/9226906 (accessed on 19 January 2021).
- Bansal, P.; Singh, A. Smart metering in smart grid framework: A review. In Proceedings of the 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, 22–24 December 2016; pp. 174–176. [Google Scholar] [CrossRef]
- Albataineh, H.; Nijim, M.; Bollampall, D. The Design of a Novel Smart Home Control System using Smart Grid Based on Edge and Cloud Computing. In Proceedings of the 2020 IEEE 8th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August 2020; pp. 88–91. [Google Scholar] [CrossRef]
- Colistra, J. The Evolving Architecture of Smart Cities. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Eremia, M.; Liu, C.-C.; Edris, A.-A. FACTS Technologies. In Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence; IEEE: Piscataway, NJ, USA, 2016; pp. 269–270. [Google Scholar] [CrossRef]
- Barnes, M.; Van Hertem, D.; Teeuwsen, S.P.; Callavik, M. HVDC Systems in Smart Grids. Proc. IEEE 2017, 105, 2082–2098. [Google Scholar] [CrossRef]
- Brunner, C. IEC 61850 for power system communication. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 21–24 April 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Hou, Y.; Mei, S.; Zhou, H.; Zhong, J. Blackout prevention: Managing complexity with technology. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Makarov, Y.; Reshetov, V.; Stroev, A.; Voropai, I. Blackout Prevention in the United States, Europe, and Russia. Proc. IEEE 2005, 93, 1942–1955. [Google Scholar] [CrossRef]
- Pimjaipong, W.; Junrussameevilai, T.; Maneerat, N. Blackout Prevention Plan—The Stability, Reliability and Security Enhancement in Thailand Power Grid. In Proceedings of the 2005 IEEE/PES Transmission Distribution Conference Exposition: Asia and Pacific, Dalian, China, 18 August 2005; pp. 1–6. [Google Scholar] [CrossRef]
- IEEE Approved Draft Guide for Engineering, Implementation, and Management of System Integrity Protection Schemes; IEEE PC37250D130 November 2019; IEEE: Piscataway, NJ, USA, 2020; pp. 1–68.
- Almasabi, S.; Mitra, J. An overview of synchrophasors and their applications in smart grids. In Proceedings of the 2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI), Kolkata, India, 21–23 October 2016; pp. 179–183. [Google Scholar] [CrossRef]
- Barchi, G.; Macii, D.; Petri, D. Phasor measurement units for smart grids: Estimation algorithms and performance issues. In Proceedings of the AEIT Annual Conference 2013, Palermo, Italy, 3–5 October 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Phadke, A.G. Synchronized phasor measurements-a historical overview. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan, 6–10 October 2002; Volume 1, pp. 476–479. [Google Scholar] [CrossRef]
- Sharma, R.B.; Dhole, G.M.; Tasare, M.B. Design of single phase Phasor Measurment Unit prototype. In Proceedings of the 2016 International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 12–13 August 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Amaripadath, D.; Roche, R.; Joseph-Auguste, L.; Istrate, D.; Fortune, D.; Braun, J.; Gao, F. Power quality disturbances on smart grids: Overview and grid measurement configurations. In Proceedings of the 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Wang, Z.; Xue, Y. An Overview on Application Analysis of Power Electronic Technology in Smart Grid. In Proceedings of the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 5186–5189. [Google Scholar] [CrossRef]
- Ding, Y.; Li, X.; Li, C.; Teng, F.; Zheng, Y. Boundary Device Management Tool for Distribution Network Model Resource Center in Advanced Distribution Management System. In Proceedings of the 2019 7th International Conference on Smart Grid (icSmartGrid), Newcastle, NSW, Australia, 9–11 December 2019; pp. 113–117. [Google Scholar] [CrossRef]
- Smith, H.L. DA/DSM directions. An overview of distribution automation and demand-side management with implications of future trends. IEEE Comput. Appl. Power 1994, 7, 23–25. [Google Scholar] [CrossRef]
- Williams, B.; Ao, S. Advanced Distribution Management can bridge the chasm on the road to grid modernization. In Proceedings of the 2012 China International Conference on Electricity Distribution, Shanghai, China, 10–14 September 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Vukobratović, M.; Hercog, M.; Varga, I.; Vuković, D.; Klaić, Z.; Vranješ, D. Survey of Methods for Advanced Distribution Management Systems. In Proceedings of the 2020 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 14–16 October 2020; pp. 253–256. [Google Scholar] [CrossRef]
- Gebremichael, T.; Ledwaba, L.; Eldefrawy, M.H.; Hancke, G.P.; Pereira, N.; Gidlund, M.; Akerberg, J. Security and Privacy in the Industrial Internet of Things: Current Standards and Future Challenges. IEEE Access 2020, 8, 152351–152366. [Google Scholar] [CrossRef]
- Fan, L.; Li, J.; Pan, Y.; Wang, S.; Yan, C.; Yao, D. Research and Application of Smart Grid Early Warning Decision Platform Based on Big Data Analysis. In Proceedings of the 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG), Hubei, China, 6–9 September 2019; pp. 645–648. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, Y.; Yu, Y.; Shi, Y.; Liang, K. Overview of Data Mining and Visual Analytics towards Big Data in Smart Grid. In Proceedings of the 2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI), Beijing, China, 20–21 October 2016; pp. 453–456. [Google Scholar] [CrossRef]
- Lee, C.; Shin, S. Fault Tolerance for Software-Defined Networking in Smart Grid. In Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 15–17 January 2018; pp. 705–708. [Google Scholar] [CrossRef]
- Demertzis, K.; Iliadis, L.S.; Anezakis, V.-D. An innovative soft computing system for smart energy grids cybersecurity. Adv. Build. Energy Res. 2018, 12, 3–24. [Google Scholar] [CrossRef]
- Ling, L.; Hongyong, Y.; Xia, C. Model Differences between IEC 61970/61968 and IEC 61850. In Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering Applications, Hong Kong, China, 16–18 January 2013; pp. 938–941. [Google Scholar] [CrossRef]
- Lv, G.; Zhao, J.; Su, J.; Zhang, D. Research on IEC 61968 Standard Oriented Function Framework of Adapter in Smart Distribution Grid. In Proceedings of the 2013 Fourth International Conference on Digital Manufacturing Automation, Shinan, China, 29–30 June 2013; pp. 1061–1065. [Google Scholar] [CrossRef]
- Othman, H.; Aji, Y.; Fakhreddin, F.; Al-Ali, A. Controller Area Networks: Evolution and Applications. In Proceedings of the 2006 2nd International Conference on Information Communication Technologies, Damascus, Syria, 24–28 April 2006. [Google Scholar]
- Sharan, S. Home networks—Getting there. In Proceedings of the 2002 IEEE 4th International Workshop on Networked Appliances (Cat. No.02EX525), Gaithersburg, MD, USA, 15–16 January 2002. [Google Scholar]
- Gopstein, A.; Goldstein, A.; Anand, D.; Boynton, P. Summary Report on NIST Smart Grid Testbeds and Collaborations Workshops, March 2021. Available online: https://www.nist.gov/publications/summary-report-nist-smart-grid-testbeds-and-collaborations-workshops (accessed on 30 May 2021).
- IEEE Draft Standard Requirements for Overhead, Pad-Mounted, Dry-Vault, and Submersible Automatic Line Sectionalizers for Alternating Current Systems Up to 38 kV; IEEE PC3763D5 November 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–48.
- Kazičková, T.; Buhnova, B. ICT architecture for the Smart Grid: Concept overview. In Proceedings of the 2016 Smart Cities Symposium Prague (SCSP), Prague, Czech Republic, 26–27 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Kumar, P.; Lin, Y.; Bai, G.; Paverd, A.; Dong, J.S.; Martin, A. Smart Grid Metering Networks: A Survey on Security, Privacy and Open Research Issues. IEEE Commun. Surv. Tutor. 2019, 21, 2886–2927. [Google Scholar] [CrossRef] [Green Version]
- Demertzis, K.; Iliadis, L.; Tziritas, N.; Kikiras, P. Anomaly detection via blockchained deep learning smart contracts in industry 4.0. Neural Comput. Appl. 2020, 32, 17361–17378. [Google Scholar] [CrossRef]
- Nomikos, N.; Nieto, A.; Makris, P.; Skoutas, D.N.; Vouyioukas, D.; Rizomiliotis, P.; Lopez, J.; Skianis, C. Relay selection for secure 5G green communications. Telecommun. Syst. 2015, 59, 169–187. [Google Scholar] [CrossRef]
- Molzahn, D.K.; Dörfler, F.; Sandberg, H.; Low, S.H.; Chakrabarti, S.; Baldick, R.; Lavaei, J. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems. IEEE Trans. Smart Grid 2017, 8, 2941–2962. [Google Scholar] [CrossRef]
- Shenming, Z.; Jianguo, Y.; Zhihong, Y.; Mei, C.; Qiang, S. Implementation of standard IEC 61970 in EMS systems. In Proceedings of the 2004 International Conference on Power System Technology, PowerCon 2004, Singapore, 21–24 November 2004; pp. 114–118. [Google Scholar] [CrossRef]
- Yaqin, Y.; Zhongxi, W.; Chunming, H. A Novel implementation of IEC 61970 CIS based on Ice middleware. In Proceedings of the 2005 IEEE/PES Transmission Distribution Conference Exposition: Asia and Pacific, Dalian, China, 18 August 2005; pp. 1–4. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Sun, J. IEC 61970 CIM/CIS in power dispatching automation system standard conformance test technology research. In Proceedings of the CICED 2010 Proceedings, Nanjing, China, 13–16 September 2010; pp. 1–4. [Google Scholar]
- Gill, H.M. Smart Grid distribution automation for public power. In Proceedings of the IEEE PES T&D 2010, New Orleans, LA, USA, 19–22 April 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Bosisio, A.; Berizzi, A.; Morotti, A.; Pegoiani, A.; Greco, B.; Iannarelli, G. IEC 61850-based smart automation system logic to improve reliability indices in distribution networks. In Proceedings of the 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), Florence, Italy, 18–20 October 2019; pp. 1219–1222. [Google Scholar] [CrossRef]
- Tatsis, V.I.; Karavolos, M.; Skoutas, D.N.; Nomikos, N.; Vouyioukas, D.; Skianis, C. Energy-aware clustering of CoMP-DPS transmission points. Comput. Commun. 2019, 135, 28–39. [Google Scholar] [CrossRef]
- Skoutas, D.N.S.; Nomikos, N.N.; Vouyioukas, D.V.; Skianis, C.S.; Antonopoulos, A.A. Hybrid resource sharing for QoS preservation in virtual wireless networks. In Cloud and Fog Computing in 5G Mobile Networks: Emerging Advances and Applications; Institution of Engineering and Technology: London, UK, 2017; pp. 303–324. [Google Scholar] [CrossRef]
- Wei-Chun, G.; Huan-Huan, L.; Hong-Hao, Z.; Qiang, G.; Gui-Ping, Z.; Yi-Ling, M.; Li-Na, F. Research on communication technology of power monitoring system based on medium voltage power line carrier and low power wide area network. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- IEEE Draft Standard for Low Frequency (Less Than 500 kHz) Narrow Band Power Line Communications for Smart Grid Applications; IEEE P19012D00800 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–336.
- Huang, L.; Duan, B.; Lin, Y.; Tian, S. Design of IEC 61400-25 gateway for RIU replacement. In Proceedings of the 2009 International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6–7 April 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Lee, J.-H.; Seo, M.-J.; Kim, G.-S.; Lee, H.-H. IEC 61400-25 interface using MMS and web service for remote supervisory control at wind power plants. In Proceedings of the 2008 International Conference on Control, Automation and Systems, Seoul, Korea, 14–17 October 2008; pp. 2719–2723. [Google Scholar] [CrossRef]
- Tsiknas, K.; Taketzis, D.; Demertzis, K.; Skianis, C. Cyber Threats to Industrial IoT: A Survey on Attacks and Countermeasures. IoT 2021, 2, 163–188. [Google Scholar] [CrossRef]
- Sajjad, M.I.A.; Napoli, R.; Chicco, G.; Martirano, L. A conceptual framework for the business model of smart grids. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Elma, O.; Selamoğullari, U.S. An overview of demand response applications under smart grid concept. In Proceedings of the 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE), Ankara, Turkey, 8–10 April 2017; pp. 104–107. [Google Scholar] [CrossRef]
- Kheaksong, A.; Lee, W. Packet transfer of DLMS/COSEM standards for smart grid. In Proceedings of the The 20th Asia-Pacific Conference on Communication (APCC2014), Pattaya, Thailand, 1–3 October 2014; pp. 391–396. [Google Scholar] [CrossRef]
- Dong, M.; Tian, S.; Zhu, W.; Jia, B.; Li, B.; Qi, B. Research and development of automated demand response standard system. In Proceedings of the 2017 2nd International Conference on Power and Renewable Energy (ICPRE), Chengdu, China, 20–23 September 2017; pp. 608–611. [Google Scholar] [CrossRef]
- Deotare, P.; Dole, L. Overview of automation of Smart Grid network. In Proceedings of the 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 9–10 January 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Martirano, L.; Mitolo, M. Building Automation and Control Systems (BACS): A Review. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Hasan, M.; Biswas, P.; Bilash, T.I.; Dipto, A.Z. Smart Home Systems: Overview and Comparative Analysis. In Proceedings of the 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, India, 22–23 November 2018; pp. 264–268. [Google Scholar] [CrossRef]
- Paul, C.; Ganesh, A.; Sunitha, C. An overview of IoT based smart homes. In Proceedings of the 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2018; pp. 43–46. [Google Scholar] [CrossRef]
- Vasicek, D.; Jalowiczor, J.; Sevcik, L.; Voznak, M. IoT Smart Home Concept. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Nezevak, V.L.; Shatokhin, A.P. Control of Hybrid Electric Energy Storage Unit Parameters in Electric Traction System. In Proceedings of the 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 1–4 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- IEEE Standard Test Procedures for Electric Energy Storage Equipment and Systems for Electric Power Systems Applications; IEEE Std 20303-2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–72. [CrossRef]
- Demertzis, K.; Iliadis, L. A Hybrid Network Anomaly and Intrusion Detection Approach Based on Evolving Spiking Neural Network Classification. In E-Democracy, Security, Privacy and Trust in a Digital World; Sideridis, A.B., Kardasiadou, Z., Yialouris, C.P., Zorkadis, V., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 441, pp. 11–23. [Google Scholar] [CrossRef]
- Zhang, K.; Mao, Y.; Leng, S.; Maharjan, S.; Zhang, Y.; Vinel, A.; Jonsson, M. Incentive-Driven Energy Trading in the Smart Grid. IEEE Access 2016, 4, 1243–1257. [Google Scholar] [CrossRef]
- Brenna, M.; Foiadelli, F.; Longo, M.; Zaninelli, D. e-Mobility Forecast for the Transnational e-Corridor Planning. IEEE Trans. Intell. Transp. Syst. 2016, 17, 680–689. [Google Scholar] [CrossRef]
- Kippke, M.A.; Arboleya, P.; El Sayed, I. Communication Infrastructure for E-Mobility Charging Stations V2G Applications. In Proceedings of the 2020 8th International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, China, 7–10 December 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Kurfirt, M.; Kaspirek, M.; Hlavnicka, J. E-mobility Impact on Supply in Distribution Grid. In Proceedings of the 2019 20th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 15–17 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Khan, F.; Siddiqui, M.A.B.; Rehman, A.U.; Khan, J.; Asad, M.T.S.A.; Asad, A. IoT Based Power Monitoring System for Smart Grid Applications. In Proceedings of the 2020 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, 22–23 February 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Demertzis, K.; Kikiras, P.; Tziritas, N.; Sanchez, S.L.; Iliadis, L. The Next Generation Cognitive Security Operations Center: Network Flow Forensics Using Cybersecurity Intelligence. Big Data Cogn. Comput. 2018, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Dawood, K. An overview of renewable energy and challenges of integrating renewable energy in a smart grid system in Turkey. In Proceedings of the 2020 International Conference on Electrical Engineering (ICEE), Istanbul, Turkey, 25–27 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Diakov, V.; Brinkman, G.; Denholm, P.; Jenkin, T.; Margolis, R. Renewable generation effect on net regional energy interchange. In Proceedings of the 2015 IEEE Power Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Molotov, P.; Vaskov, A.; Tyagunov, M. Modeling Processes in Microgrids with Renewable Energy Sources. In Proceedings of the 2018 International Ural Conference on Green Energy (UralCon), Chelyabinsk, Russia, 4–6 October 2018; pp. 203–208. [Google Scholar] [CrossRef]
- Wang, H. Microgrid generation planning considering renewable energy target. In Proceedings of the 2016 IEEE International Conference on Power and Energy (PECon), Melaka, Malaysia, 28–29 November 2016; pp. 356–360. [Google Scholar] [CrossRef]
- Angelis, N.; Archontos, N.; Vouyioukas, D.; Nomikos, N.; Skianis, C. An integrated NAN architecture for smart energy grid. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
Product and Safety Standards | Smart Grid Standards | Physical Interconnection | Communication | Market Information | General Standards |
---|---|---|---|---|---|
IEC 61982-1,2,3,4,5 IEC 62576 IEC/NWIP 62619 | IEC 60364-5-53 IEC 60364-5-55 IEC 60364-7-712 IEC 60364-7-722 IEC/NP 60364-7-760 IEEE P2030.1 | IEC 60309 Ed. 4.1 IEC 60309-1 Ed 4.1 IEC 60309-2 Ed 4.1 IEC 62196 Ed, 1,0 IEC 62196-1 | IEC 61850 IEC 61968 IEC 61851-31 IEC 61851-32 ISO/IEC 15118 ISO/IEC 15118-1,2,3 | IEC/TR 62325 IEC/TR 62325-501 | ISO/CD 12405 ISO 6469-1,2,3 SAE J1772 SAE J2836/1-3 SAE J2847/1-3 USA–SAE J1771 USA–SAE J2836 |
Wind Power | Solar Voltaic | Fuel Cells | Pumped Stoage | Distributed Generation | Nuclear Generation | Conventional Power |
---|---|---|---|---|---|---|
IEC 61400 series ISO 81400-4 | IEC-60904 series IEC 61194 IEC 61724 IEC 61730 series IEC 61730-1 IEC 61730-2 IEC/TS 61836 IEC 62446 IEC/TS 62257 IEC 61727 | IEC 62282-x IEC 62282-1 IEC 62282-2 IEC 62282-3-1 IEC 62282-3-2 IEC 62282-3-3 IEC 62282-5-1 IEC 62282-6-200 IEC 62282-6-300 | IEC 60193 IEC 60041 | IEC 62257-1,2,3,4,5,6,7 IEC 62257-7-3 IEC 62257-8-1 IEC 62257-9-1,2,3,4,5,6 IEEE 1547 IEEE 1547.3 MAIN Guide NO3B | NERC/NUC-001-1 | IEC 60308 IEC 61850-7-410 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demertzis, K.; Tsiknas, K.; Taketzis, D.; Skoutas, D.N.; Skianis, C.; Iliadis, L.; Zoiros, K.E. Communication Network Standards for Smart Grid Infrastructures. Network 2021, 1, 132-145. https://doi.org/10.3390/network1020009
Demertzis K, Tsiknas K, Taketzis D, Skoutas DN, Skianis C, Iliadis L, Zoiros KE. Communication Network Standards for Smart Grid Infrastructures. Network. 2021; 1(2):132-145. https://doi.org/10.3390/network1020009
Chicago/Turabian StyleDemertzis, Konstantinos, Konstantinos Tsiknas, Dimitrios Taketzis, Dimitrios N. Skoutas, Charalabos Skianis, Lazaros Iliadis, and Kyriakos E. Zoiros. 2021. "Communication Network Standards for Smart Grid Infrastructures" Network 1, no. 2: 132-145. https://doi.org/10.3390/network1020009
APA StyleDemertzis, K., Tsiknas, K., Taketzis, D., Skoutas, D. N., Skianis, C., Iliadis, L., & Zoiros, K. E. (2021). Communication Network Standards for Smart Grid Infrastructures. Network, 1(2), 132-145. https://doi.org/10.3390/network1020009