The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- Zone A: The Florida Panhandle, including the counties of Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf, Franklin, Wakulla, Jefferson, Taylor, Dixie, Levy, and Citrus.
- Zone B: The Southwest Florida Gulf, including the counties of Hernando, Pasco, Pinellas, Hillsborough, Manatee, Sarasota, Charlotte, Lee, Collier, and Monroe.
- Zone C: The Atlantic Ocean, including the counties of Miami-Dade, Broward, Palm Beach, Martin, St. Lucie, Indian River, Brevard, Volusia, Flagler, St. Johns, Duval, and Nassau.
2.2. Data Preparation
2.3. Pixel Level Analysis
2.4. Object Level Assessment
- The average area of tidal flat objects: The converted data could be directly used to track the changes by zone throughout the 37 years.
- Weighted Polsby-Popper value [54]: The Polsby-Popper test is used to measure the compactness of the shape, which finds the ratio of the area of a tidal flat object to the area of a circle with the same perimeter as the tidal flat object and it varies from 0 (least compact) to 1 (most compact). In this study, an average value weighted by tidal flat object area was derived from each zone in each year, from which the temporal patterns of compactness changes could be identified.
2.5. Temporal Trends
3. Results and Discussion
3.1. Pixel Level
3.1.1. Tidal Flat Dynamics
3.1.2. Tidal Flat Interactions
3.2. Object Level
3.3. Temporal Trends
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, S. Geomorphology and sedimentology of tidal flats. In Coastal Wetlands; Elsevier: Amsterdam, The Netherlands, 2019; pp. 359–381. [Google Scholar]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Li, B. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 2020, 238, 110987. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Hou, L.; Qin, Y.; Dong, J.; Li, B. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef]
- Mullarney, J.C.; Henderson, S.M.; Reyns, J.A.; Norris, B.K.; Bryan, K.R. Spatially varying drag within a wave-exposed mangrove forest and on the adjacent tidal flat. Cont. Shelf Res. 2017, 147, 102–113. [Google Scholar] [CrossRef]
- Reed, D.; van Wesenbeeck, B.; Herman, P.M.; Meselhe, E. Tidal flat-wetland systems as flood defenses: Understanding biogeomorphic controls. Estuar. Coast. Shelf Sci. 2018, 213, 269–282. [Google Scholar] [CrossRef]
- Choi, Y.R. Profitable tidal flats, governable fishing communities: Assembling tidal flat fisheries in post-crisis South Korea. Political Geogr. 2019, 72, 20–30. [Google Scholar] [CrossRef]
- Xu, M.; Cui, B.; Lan, S.; Li, D.; Wang, Y.; Jiang, B. Exploring dynamic change of the tidal flat aquaculture area in the shandong peninsula (China) using multitemporal landsat imagery (1990–2015). J. Coast. Res. 2020, 99, 197–202. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Li, R.; Li, X. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images. Remote Sens. Environ. 2020, 239, 111665. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Li, R.; Li, X.; Zhang, H. Monitoring long-term annual urban expansion (1986–2017) in the largest archipelago of China. Sci. Total Environ. 2021, 776, 146015. [Google Scholar] [CrossRef]
- Miththapala, S. Tidal Flats; Coastal Ecosystems Series; IUCN: Colombo, Sri Lanka, 2013; Volume 5. [Google Scholar]
- Rifat, S.A.A.; Liu, W. Measuring community disaster resilience in the conterminous coastal United States. ISPRS Int. J. Geo-Inf. 2020, 9, 469. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Dong, X.; Liu, Z.; Gao, W.; Hu, Z.; Wu, G. Mapping tidal flats with Landsat 8 images and google earth engine: A case study of the China’s eastern coastal zone circa 2015. Remote Sens. 2019, 11, 924. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Liu, W. Mapping and analyzing the annual dynamics of tidal flats in the conterminous United States during 1984 to 2020 using Google Earth Engine. Environ. Adv. 2021. submitted. [Google Scholar]
- Hu, Y.; Zhang, Y. Spatial–temporal dynamics and driving factor analysis of urban ecological land in Zhuhai city, China. Sci. Rep. 2020, 10, 16174. [Google Scholar] [CrossRef]
- Cao, W.; Li, R.; Chi, X.; Chen, N.; Chen, J.; Zhang, H.; Zhang, F. Island urbanization and its ecological consequences: A case study in the Zhoushan Island, East China. Ecol. Indic. 2017, 76, 1–14. [Google Scholar] [CrossRef]
- Ahlqvist, O.; Bibby, P.; Duckham, M.; Fisher, P.; Harvey, F.; Schuurman, N. Not just objects: Reconstructing objects. In Re-Presenting GIS; John Wiley & Sons: London, UK, 2005; pp. 17–25. [Google Scholar]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Tiede, D. Geographic object-based image analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Couclelis, H. People manipulate objects (but cultivate fields): Beyond the raster-vector debate in GIS. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space; Springer: Berlin/Heidelberg, Germany, 1992; pp. 65–77. [Google Scholar]
- Goodchild, M.F.; Yuan, M.; Cova, T.J. Towards a general theory of geographic representation in GIS. Int. J. Geogr. Inf. Sci. 2007, 21, 239–260. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Li, X.; Rahn, D.A. Storm event representation and analysis based on a directed spatiotemporal graph model. Int. J. Geogr. Inf. Sci. 2016, 30, 948–969. [Google Scholar] [CrossRef]
- Zhu, R.; Guilbert, E.; Wong, M.S. Object-oriented tracking of the dynamic behavior of urban heat islands. Int. J. Geogr. Inf. Sci. 2017, 31, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Liu, W. Integrating a Three-Level GIS Framework and a Graph Model to Track, Represent, and Analyze the Dynamic Activities of Tidal Flats. ISPRS Int. J. Geo-Inf. 2021, 10, 61. [Google Scholar] [CrossRef]
- Central Intelligence Agency. Coastline. The World Factbook. 2021. Available online: https://www.cia.gov/the-world-factbook/field/coastline/ (accessed on 13 November 2021).
- Lamb, B.T.; Tzortziou, M.A.; McDonald, K.C. Evaluation of approaches for mapping tidal wetlands of the chesapeake and delaware bays. Remote Sens. 2019, 11, 2366. [Google Scholar] [CrossRef] [Green Version]
- Ballanti, L.; Byrd, K.B.; Woo, I.; Ellings, C. Remote sensing for wetland mapping and historical change detection at the nisqually river delta. Sustainability 2017, 9, 1919. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Gong, P. Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of landsat imagery. Remote Sens. Environ. 2016, 179, 196–209. [Google Scholar] [CrossRef]
- Ghosh, S.; Mishra, D.R.; Gitelson, A.A. Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico—A methodological approach using MODIS. Remote Sens. Environ. 2016, 173, 39–58. [Google Scholar] [CrossRef] [Green Version]
- National Oceanic and Atmospheric Administration. Shoreline Mileage of the United States. NOAA Shoreline Website. 2021. Available online: https://coast.noaa.gov/data/docs/states/shorelines.pdf (accessed on 13 November 2021).
- United States Census Bureau. Resident Population for the 50 States, the District of Columbia, and Puerto Rico: 2020 Census. 2020 Census Apportionment Results. 2021. Available online: https://www2.census.gov/programs-surveys/decennial/2020/data/apportionment/apportionment-2020-table02.pdf (accessed on 13 November 2021).
- United States Census Bureau. Annual Resident Population Estimates, Estimated Components of Resident Population Change, and Rates of the Components of Resident Population Change for States and Counties: April 1, 2010 to July 1, 2020. County Population Totals: 2010–2020. 2020. Available online: https://www.census.gov/programs-surveys/popest/technical-documentation/research/evaluation-estimates/2020-evaluation-estimates/2010s-counties-total.html (accessed on 13 November 2021).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Scott, T.M.; Campbell, K.M.; Rupert, F.R.; Arthur, J.D.; Missimer, T.M.; Lloyd, J.M.; Yon, J.W.; Duncan, J.G. Geologic Map of the State of Florida; Florida Geological Survey: Tallahassee, FL, USA, 2001. [Google Scholar]
- Malmstadt, J.; Scheitlin, K.; Elsner, J. Florida hurricanes and damage costs. Southeast. Geogr. 2009, 49, 108–131. [Google Scholar] [CrossRef]
- Davis, S.E., III; Cable, J.E.; Childers, D.L.; Coronado-Molina, C.; Day, J.W., Jr.; Hittle, C.D.; Sklar, F. Importance of storm events in controlling ecosystem structure and function in a Florida gulf coast estuary. J. Coast. Res. 2004, 20, 1198–1208. [Google Scholar] [CrossRef]
- Risi, J.A.; Wanless, H.R.; Tedesco, L.P.; Gelsanliter, S. Catastrophic sedimentation from Hurricane Andrew along the southwest Florida coast. J. Coast. Res. 1995, 83–102. Available online: https://www.jstor.org/stable/25736002 (accessed on 13 November 2021).
- Breithaupt, J.L.; Hurst, N.; Steinmuller, H.E.; Duga, E.; Smoak, J.M.; Kominoski, J.S.; Chambers, L.G. Comparing the biogeochemistry of storm surge sediments and pre-storm soils in coastal wetlands: Hurricane Irma and the Florida Everglades. Estuaries Coasts 2020, 43, 1090–1103. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Q.; Hu, K.; Xu, K.; Twilley, R.R. Modeling hurricane-induced wetland-bay and bay-shelf sediment fluxes. Coast. Eng. 2018, 135, 77–90. [Google Scholar] [CrossRef]
- Zang, Z.; Xue, Z.G.; Xu, K.; Bentley, S.J.; Chen, Q.; D’Sa, E.J.; Ou, Y. The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008). Biogeosciences 2020, 17, 5043–5055. [Google Scholar] [CrossRef]
- Bianucci, L.; Balaguru, K.; Smith, R.W.; Leung, L.R.; Moriarty, J.M. Contribution of hurricane-induced sediment resuspension to coastal oxygen dynamics. Sci. Rep. 2018, 8, 15740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takesue, R.K.; Sherman, C.; Ramirez, N.I.; Reyes, A.O.; Cheriton, O.M.; Ríos, R.V.; Storlazzi, C.D. Land-based sediment sources and transport to southwest Puerto Rico coral reefs after Hurricane Maria, May 2017 to June 2018. Estuar. Coast. Shelf Sci. 2021, 259, 107476. [Google Scholar] [CrossRef]
- Ramos-Scharrón, C.E.; Arima, E.Y.; Guidry, A.; Ruffe, D.; Vest, B. Sediment mobilization by hurricane-driven shallow landsliding in a wet subtropical watershed. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF006054. [Google Scholar] [CrossRef]
- Borchert, S.M.; Osland, M.J.; Enwright, N.M.; Griffith, K.T. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze. J. Appl. Ecol. 2018, 55, 2876–2887. [Google Scholar] [CrossRef]
- Mendelssohn, I.A.; Byrnes, M.R.; Kneib, R.T.; Vittor, B.A. Coastal habitats of the Gulf of Mexico. In Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill; Springer: New York, NY, USA, 2017; pp. 359–640. [Google Scholar]
- Komar, P.D. Beach processes and erosion—An introduction. In CRC Handbook of Coastal Processes and Erosion; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–20. [Google Scholar]
- Florida Department of Environmental Protection. Florida Coastal Access Guide. Resilience and Coastal Protection. 2020. Available online: https://floridadep.gov/rcp/coastal-access-guide/content/florida-coastal-access-guide (accessed on 13 November 2021).
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; Van Leeuwen, W.J.D.A. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Polsby, D.D.; Popper, R.D. The third criterion: Compactness as a procedural safeguard against partisan gerrymandering. Yale Law Policy Rev. 1991, 9, 301–353. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Da Silva, R.M.; Santos, C.A.; Moreira, M.; Corte-Real, J.; Silva, V.C.; Medeiros, I.C. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Diop, L.; Bodian, A.; Diallo, D. Spatiotemporal trend analysis of the mean annual rainfall in Senegal. Eur. Sci. J. 2016, 12, 231–245. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Minaei, M.; Irannezhad, M. Spatio-temporal trend analysis of precipitation, temperature, and river discharge in the northeast of Iran in recent decades. Theor. Appl. Climatol. 2018, 131, 167–179. [Google Scholar] [CrossRef]
- Gul, S.; Ren, J.; Zhu, Y.; Xiong, N.N. A systematic scheme for non-parametric spatio-temporal trend analysis about aridity index. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 981–986. [Google Scholar]
- Svidzinska, D.; Korohoda, N. Study of spatiotemporal variations of summer land surface temperature in Kyiv, Ukraine using Landsat time series. In Proceedings of the Geoinformatics: Theoretical and Applied Aspects 2020, Kyiv, Ukraine, 11–14 May 2020; Volume 2020, pp. 1–5. [Google Scholar]
- Wang, Z.; Liu, M.; Liu, X.; Meng, Y.; Zhu, L.; Rong, Y. Spatio-temporal evolution of 801 surface urban heat islands in the Chang-Zhu-Tan urban agglomeration. Phys. Chem. Earth Parts A/B/C 2020, 117, 102865. [Google Scholar] [CrossRef]
- Juknelienė, D.; Kazanavičiūtė, V.; Valčiukienė, J.; Atkocevičienė, V.; Mozgeris, G. Spatiotemporal patterns of land-use changes in Lithuania. Land 2021, 10, 619. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Halpert, M. United States el Niño Impacts. NOAA Climate.gov. 2021. Available online: https://www.climate.gov/news-features/blogs/enso/united-states-el-ni%C3%B1o-impacts-0 (accessed on 13 November 2021).
- Osterman, L.E.; Twichell, D.C.; Poore, R.Z. Holocene evolution of apalachicola bay, Florida. Geo-Mar. Lett. 2009, 29, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Kofoed, J.W.; Gorsline, D.S. Sedimentary environments in Apalachicola Bay and vicinity, Florida. J. Sediment. Res. 1963, 33, 205–233. [Google Scholar]
- Florida Department of Environmental Protection. Welcome to Waccasassa Bay Preserve State Park. Florida State Parks. 2021. Available online: https://www.floridastateparks.org/parks-and-trails/waccasassa-bay-preserve-state-park (accessed on 13 November 2021).
- Raabe, E.A.; Stumpf, R.P. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuaries Coasts 2016, 39, 145–157. [Google Scholar] [CrossRef]
- Lago, M.E.; Miralles-Wilhelm, F.; Mahmoudi, M.; Engel, V. Numerical modeling of the effects of water flow, sediment transport and vegetation growth on the spatiotemporal patterning of the ridge and slough landscape of the Everglades wetland. Adv. Water Resour. 2010, 33, 1268–1278. [Google Scholar] [CrossRef]
- Davis, S.M.; Childers, D.L.; Lorenz, J.J.; Wanless, H.R.; Hopkins, T.E. A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands 2005, 25, 832–842. [Google Scholar]
- Shinn, E.A.; Lidz, B.H.; Holmes, C.W. High-energy carbonate-sand accumulation, the Quicksands, southwest Florida Keys. J. Sediment. Res. 1990, 60, 952–967. [Google Scholar]
- United States Department of the Interior. Timucuan Ecological and Historical Preserve. National Park Service. 2021. Available online: https://www.nps.gov/places/timucuan-ecological-and-historical-preserve.htm (accessed on 13 November 2021).
- White, E.E.; Ury, E.A.; Bernhardt, E.S.; Yang, X. Climate Change Driving Widespread Loss of Coastal Forested Wetlands Throughout the North American Coastal Plain. Ecosystems 2021. [Google Scholar] [CrossRef]
- Jones, M.C.; Wingard, G.L.; Stackhouse, B.; Keller, K.; Willard, D.; Marot, M.; Bernhardt, C.E. Rapid inundation of southern Florida coastline despite low relative sea-level rise rates during the late-Holocene. Nat. Commun. 2019, 10, 3231. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.J.; Dimmitt, B.; Muller-Karger, F.E. Rapid coastal forest decline in Florida’s big bend. Remote Sens. 2018, 10, 1721. [Google Scholar] [CrossRef] [Green Version]
- United States Department of the Interior. Comprehensive Everglades Restoration Plan (CERP). National Park Service. 2021. Available online: https://www.nps.gov/ever/learn/nature/cerp.htm (accessed on 13 November 2021).
- Stabenau, E.; Engel, V.; Sadle, J.; Pearlstine, L. Sea-level rise: Observations, impacts, and proactive measures in Everglades National Park. Park Sci. 2011, 28, 26–30. [Google Scholar]
- Krauss, K.W.; From, A.S.; Doyle, T.W.; Doyle, T.J.; Barry, M.J. Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA. J. Coast. Conserv. 2011, 15, 629–638. [Google Scholar] [CrossRef]
- Davis, G.E. Maintaining Unimpaired Ocean Resources and Experiences: A National Park Service Ocean Stewardship Strategy. In The George Wright Forum; George Wright Society: Hancock, MI, USA, 2004; Volume 21, pp. 22–41. Available online: http://www.jstor.org/stable/43597919 (accessed on 13 November 2021).
- Halley, R.B.; Prager, E.J.; Stumpf, R.P.; Yates, K.K.; Holmes, C.H. Sea-level rise and the future of Florida Bay in the next century. In US Geological Survey Program on the South Florida Ecosystem, Proceedings of South Florida Restoration Science Forum, 17–19 May 1999, Boca Raton, FL, USA; U.S. Geological Survey: Tallahassee, FL, USA, 2001. [Google Scholar] [CrossRef]
- Zhang, K.; Dittmar, J.; Ross, M.; Bergh, C. Assessment of sea level rise impacts on human population and real property in the Florida Keys. Clim. Chang. 2011, 107, 129–146. [Google Scholar] [CrossRef]
- Wu, M.; Harris, P.M.; Eberli, G.; Purkis, S.J. Sea-level, storms, and sedimentation—Controls on the architecture of the Andros tidal flats (Great Bahama Bank). Sediment. Geol. 2021, 420, 105932. [Google Scholar] [CrossRef]
- Florida Department of Environmental Protection. Florida Coastal Management Program. Office of Resilience and Coastal Protection. 2021. Available online: https://floridadep.gov/fcmp (accessed on 13 November 2021).
Zones | A | B | C | All | |||||
---|---|---|---|---|---|---|---|---|---|
Area | p-Value | Sen’s Slope | p-Value | Sen’s Slope | p-Value | Sen’s Slope | p-Value | Sen’s Slope | |
Tidal Flats in Total | 0.577 | −0.555 | 0.438 | 3.079 | 0.138 | 1.320 | 0.215 | 5.099 | |
Preserved Tidal Flats | 0.776 | −0.148 | 0.105 | 2.991 | 0.010 * | 2.302 | 0.005 * | 5.160 | |
Tidal Flats to Lands | 0.211 | −0.354 | 0.061 | −0.523 | 0.023 * | −0.885 | 0.008 * | −1.800 | |
Lands to Tidal Flats | 0.099 | −0.432 | 0.233 | −0.323 | 0.031 * | −0.738 | 0.018 * | −1.787 | |
Tidal Flats to Permanent Water | 0.776 | 0.137 | 0.363 | 1.887 | 0.955 | −0.023 | 0.394 | 2.157 | |
Permanent Water to Tidal Flats | 0.820 | 0.062 | 0.349 | 1.757 | 0.443 | −0.205 | 0.334 | 2.218 |
Zones | A | B | C | All | |||||
---|---|---|---|---|---|---|---|---|---|
Object Attributes | p-Value | Sen’s Slope | p-Value | Sen’s Slope | p-Value | Sen’s Slope | p-Value | Sen’s Slope | |
Average Area (in m2) | 0.070 | 121.33 | <0.001 * | 498.74 | <0.001 * | 504.50 | <0.001 * | 444.51 | |
Weighted Polsby-Popper value | 0.178 | −0.0002 | 0.070 | −0.0004 | 0.045 * | −0.0003 | 0.012 * | −0.0004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Liu, W. The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020. Geographies 2021, 1, 292-314. https://doi.org/10.3390/geographies1030016
Xu C, Liu W. The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020. Geographies. 2021; 1(3):292-314. https://doi.org/10.3390/geographies1030016
Chicago/Turabian StyleXu, Chao, and Weibo Liu. 2021. "The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020" Geographies 1, no. 3: 292-314. https://doi.org/10.3390/geographies1030016
APA StyleXu, C., & Liu, W. (2021). The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020. Geographies, 1(3), 292-314. https://doi.org/10.3390/geographies1030016