CsNOSIP Reverses NLRP3 Inflammasome Activation Induced by CsESPs via Inducing iNOS and NO Expression and Inhibiting NF-κB Signaling Pathway in Macrophages
Abstract
1. Background
2. Materials and Methods
2.1. Expression and Purification of Recombinant CsNOSIP
2.2. Culture and Treatment of Macrophage Cell Line RAW264.7 Cells
2.3. Reverse Transcription and Quantitative Real-Time PCR
2.4. ELISA
2.5. Western Blot Analysis
2.6. Measurement of NO Level
2.7. Statistical Analysis
3. Results
3.1. CsESPs Facilitated Activation of NLRP3 Inflammasome in RAW264.7 Cells
3.2. CsNOSIP Suppressed NLRP3 Inflammasome Mediated IL-1β Secretion in LPS-Primed RAW264.7 via NLRP3- and Caspase-1-Dependent Manner
3.3. CsNOSIP Reversed the Facilitation Effect of NLRP3 Inflammasome Activation Induced by CsESPs in LPS Primed-RAW264.7
3.4. Cellular Mechanisms Involved in CsNOSI-Mediated Reverse Effect on NLRP3 Inflammasome Activation Induced by CsESPs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Control of foodborne trematode infections: Report of a WHO study group. World Health Organ. Tech. Rep. Ser. 1995, 849, 1–157. [Google Scholar]
- Xiao, H.-Y.; Chai, J.-Y.; Fang, Y.-Y.; Lai, Y.-S. The spatial-temporal risk profiling of Clonorchis sinensis infection over 50 years implies the effectiveness of control programs in South Korea: A geostatistical modeling study. Lancet Reg. Health–West. Pac. 2023, 33, 100697. [Google Scholar] [CrossRef]
- Qian, M.-B.; Keiser, J.; Utzinger, J.; Zhou, X.-N. Clonorchiasis and opisthorchiasis: Epidemiology, transmission, clinical features, morbidity, diagnosis, treatment, and control. Clin. Microbiol. Rev. 2024, 37, e0000923. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Tian, Y.; Chen, W.; Wang, X.; Li, X.; Mao, Q.; Sun, J.; Li, R.; Xu, Y.; Liang, C.; et al. The biochemical and immunological characterization of two serpins from Clonorchis sinensis. Mol. Biol. Rep. 2013, 40, 3977–3985. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.B.; Chen, Y.D.; Fang, Y.Y.; Xu, L.Q.; Zhu, T.J.; Tan, T.; Zhou, C.H.; Wang, G.F.; Jia, T.W.; Yang, G.J.; et al. Disability weight of Clonorchis sinensis infection: Captured from community study and model simulation. PLoS Negl. Trop. Dis. 2011, 5, e1377. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Mazmanian, S.K. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat. Immunol. 2013, 14, 668–675. [Google Scholar] [CrossRef]
- Tsubokawa, D. Immunomodulators secreted from parasitic helminths act on pattern recognition receptors. Front. Parasitol. 2023, 1, 1091596. [Google Scholar] [CrossRef]
- Singh, A.P.; Buscaglia, C.A.; Wang, Q.; Levay, A.; Nussenzweig, D.R.; Walker, J.R.; Winzeler, E.A.; Fujii, H.; Fontoura, B.M.; Nussenzweig, V. Plasmodium circumsporozoite protein promotes the development of the liver stages of the parasite. Cell 2007, 131, 492–504. [Google Scholar] [CrossRef]
- Singer, M.; Kanatani, S.; Castillo, S.G.; Frischknecht, F.; Sinnis, P. The Plasmodium circumsporozoite protein. Trends Parasitol. 2024, 40, 1124–1134. [Google Scholar] [CrossRef]
- Silverman, J.M.; Clos, J.; Horakova, E.; Wang, A.Y.; Wiesgigl, M.; Kelly, I.; Lynn, M.A.; McMaster, W.R.; Foster, L.J.; Levings, M.K.; et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J. Immunol. 2010, 185, 5011–5022. [Google Scholar] [CrossRef]
- Rodrigues, M.M.; Oliveira, A.C.; Bellio, M. The Immune Response to Trypanosoma cruzi: Role of Toll-Like Receptors and Perspectives for Vaccine Development. J. Parasitol. Res. 2012, 2012, 507874. [Google Scholar] [CrossRef]
- Schramm, G.; Haas, H. Th2 immune response against Schistosoma mansoni infection. Microbes Infect. 2010, 12, 881–888. [Google Scholar] [CrossRef]
- Houlder, E.L.; Stam, K.A.; Koopman, J.P.R.; König, M.H.; Langenberg, M.C.C.; Hoogerwerf, M.A.; Niewold, P.; Sonnet, F.; Janse, J.J.; Partal, M.C.; et al. Early symptom-associated inflammatory responses shift to type 2 responses in controlled human schistosome infection. Sci. Immunol. 2024, 9, eadl1965. [Google Scholar] [CrossRef]
- van Die, I.; van Vliet, S.J.; Nyame, A.K.; Cummings, R.D.; Bank, C.M.; Appelmelk, B.; Geijtenbeek, T.B.; van Kooyk, Y. The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x. Glycobiology 2003, 13, 471–478. [Google Scholar] [CrossRef]
- Mazumder, S.; Sinha, A.; Ghosh, S.; Sharma, G.C.; Prusty, B.M.; Manna, D.; Pal, D.; Pal, C.; Dasgupta, S. Leishmania LPG interacts with LRR5/LRR6 of macrophage TLR4 for parasite invasion and impairs the macrophage functions. Pathog. Dis. 2023, 81, ftad019. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, R.V.H.; Lima-Júnior, D.S.; de Oliveira, C.V.; Zamboni, D.S. Endosymbiotic RNA virus inhibits. iScience 2021, 24, 102004. [Google Scholar] [CrossRef] [PubMed]
- Alonaizan, R. Molecular regulation of NLRP3 inflammasome activation during parasitic infection. Biosci. Rep. 2024, 44, BSR20231918. [Google Scholar] [CrossRef] [PubMed]
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef]
- Bian, M.; Li, S.; Wang, X.; Xu, Y.; Chen, W.; Zhou, C.; Chen, X.; He, L.; Xu, J.; Liang, C.; et al. Identification, immunolocalization, and immunological characterization of nitric oxide synthase-interacting protein from Clonorchis sinensis. Parasitol. Res. 2014, 113, 1749–1757. [Google Scholar] [CrossRef]
- Zheng, M.; Hu, K.; Liu, W.; Li, H.; Chen, J.; Yu, X. Proteomic analysis of different period excretory secretory products from Clonorchis sinensis adult worms: Molecular characterization, immunolocalization, and serological reactivity of two excretory secretory antigens-methionine aminopeptidase 2 and acid phosphatase. Parasitol. Res. 2013, 112, 1287–1297. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.L.; Huang, Y.; Yu, X.B. Current status and perspectives of Clonorchis sinensis and clonorchiasis: Epidemiology, pathogenesis, omics, prevention and control. Infect. Dis. Poverty 2016, 5, 71. [Google Scholar] [CrossRef]
- Celias, D.P.; Motrán, C.C.; Cervi, L. Helminths Turning on the NLRP3 Inflammasome: Pros and Cons. Trends Parasitol. 2020, 36, 87–90. [Google Scholar] [CrossRef]
- Paroli, A.F.; Gonzalez, P.V.; Díaz-Luján, C.; Onofrio, L.I.; Arocena, A.; Cano, R.C.; Carrera-Silva, E.A.; Gea, S. NLRP3 Inflammasome and Caspase-1/11 Pathway Orchestrate Different Outcomes in the Host Protection Against Trypanosoma cruzi Acute Infection. Front. Immunol. 2018, 9, 913. [Google Scholar] [CrossRef]
- Lima-Junior, D.S.; Costa, D.L.; Carregaro, V.; Cunha, L.D.; Silva, A.L.; Mineo, T.W.; Gutierrez, F.R.; Bellio, M.; Bortoluci, K.R.; Flavell, R.A.; et al. Inflammasome-derived IL-1β production induces nitric oxide-mediated resistance to Leishmania. Nat. Med. 2013, 19, 909–915. [Google Scholar] [CrossRef]
- Dunst, J.; Kamena, F.; Matuschewski, K. Cytokines and Chemokines in Cerebral Malaria Pathogenesis. Front. Cell Infect. Microbiol. 2017, 7, 324. [Google Scholar] [CrossRef]
- Strangward, P.; Haley, M.J.; Albornoz, M.G.; Barrington, J.; Shaw, T.; Dookie, R.; Zeef, L.; Baker, S.M.; Winter, E.; Tzeng, T.C.; et al. Targeting the IL33-NLRP3 axis improves therapy for experimental cerebral malaria. Proc. Natl. Acad. Sci. USA 2018, 115, 7404–7409. [Google Scholar] [CrossRef]
- Andargie, T.E.; Ejara, E.D. Pro-and anti-inflammatory cytokines in visceral leishmaniasis. J. Cell Sci. Ther. 2015, 6, 1. [Google Scholar] [CrossRef]
- Chen, L.; Christian, D.A.; Kochanowsky, J.A.; Phan, A.T.; Clark, J.T.; Wang, S.; Berry, C.; Oh, J.; Chen, X.; Roos, D.S.; et al. The Toxoplasma gondii virulence factor ROP16 acts in cis and trans, and suppresses T cell responses. J. Exp. Med. 2020, 217, e20181757. [Google Scholar] [CrossRef]
- Wang, P.; Li, S.; Zhao, Y.; Zhang, B.; Li, Y.; Liu, S.; Du, H.; Cao, L.; Ou, M.; Ye, X.; et al. The GRA15 protein from Toxoplasma gondii enhances host defense responses by activating the interferon stimulator STING. J. Biol. Chem. 2019, 294, 16494–16508. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Sun, H.; Wu, Y.; Gong, Y.; Tang, Z.; Meng, F.; He, L.; Yu, X.; Huang, Y.; Li, X. In vivo and in vitro studies using Clonorchis sinensis adult-derived total protein (CsTP) on cellular function and inflammatory effect in mouse and cell model. Parasitol. Res. 2020, 119, 1641–1652. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Chang, Q.C.; Gao, J.F.; Bao, M.J.; Luo, H.T.; Song, J.H.; Hong, S.J.; Mao, R.F.; Sun, Y.Y.; Chen, Y.Y.; et al. Multiple biochemical indices and metabolomics of Clonorchis sinensis provide a novel interpretation of biomarkers. Parasit. Vectors 2022, 15, 172. [Google Scholar] [CrossRef]
- Zheng, M.; Hu, K.; Liu, W.; Hu, X.; Hu, F.; Huang, L.; Wang, P.; Hu, Y.; Huang, Y.; Li, W.; et al. Proteomic analysis of excretory secretory products from Clonorchis sinensis adult worms: Molecular characterization and serological reactivity of a excretory-secretory antigen-fructose-1,6-bisphosphatase. Parasitol. Res. 2011, 109, 737–744. [Google Scholar] [CrossRef]
- Tapia-Abellán, A.; Angosto-Bazarra, D.; Alarcón-Vila, C.; Baños, M.C.; Hafner-Bratkovič, I.; Oliva, B.; Pelegrín, P. Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation. Sci. Adv. 2021, 7, eabf4468. [Google Scholar] [CrossRef]
- Mao, K.; Chen, S.; Chen, M.; Ma, Y.; Wang, Y.; Huang, B.; He, Z.; Zeng, Y.; Hu, Y.; Sun, S.; et al. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res. 2013, 23, 201–212. [Google Scholar] [CrossRef]
- Yoon, S.J.; Park, J.Y.; Choi, S.; Lee, J.B.; Jung, H.; Kim, T.D.; Yoon, S.R.; Choi, I.; Shim, S.; Park, Y.J. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS. Biochem. Biophys. Res. Commun. 2015, 463, 1184–1189. [Google Scholar] [CrossRef]
- Bian, M.; Xu, Q.; Xu, Y.; Li, S.; Wang, X.; Sheng, J.; Wu, Z.; Huang, Y.; Yu, X. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis. Parasitol. Res. 2016, 115, 77–83. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W.; Zhou, R. NLRP3 inflammasome activation and cell death. Cell. Mol. Immunol. 2021, 18, 2114–2127. [Google Scholar] [CrossRef] [PubMed]
- Bando, H.; Lee, Y.; Sakaguchi, N.; Pradipta, A.; Ma, J.S.; Tanaka, S.; Cai, Y.; Liu, J.; Shen, J.; Nishikawa, Y.; et al. Inducible Nitric Oxide Synthase Is a Key Host Factor for Toxoplasma GRA15-Dependent Disruption of the Gamma Interferon-Induced Antiparasitic Human Response. mBio 2018, 9, e01738-18. [Google Scholar] [CrossRef] [PubMed]
- Sanches, R.C.O.; Souza, C.; Oliveira, S.C. Schistosoma antigens as activators of inflammasome pathway: From an unexpected stimulus to an intriguing role. Microbes Infect. 2020, 22, 534–539. [Google Scholar] [CrossRef]
- Zhong, Z.; Umemura, A.; Sanchez-Lopez, E.; Liang, S.; Shalapour, S.; Wong, J.; He, F.; Boassa, D.; Perkins, G.; Ali, S.R.; et al. NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell 2016, 164, 896–910. [Google Scholar] [CrossRef] [PubMed]
- Zhen, D.; Xuan, T.Q.; Hu, B.; Bai, X.; Fu, D.N.; Wang, Y.; Wu, Y.; Yang, J.; Ma, Q. Pteryxin attenuates LPS-induced inflammatory responses and inhibits NLRP3 inflammasome activation in RAW264.7 cells. J. Ethnopharmacol. 2022, 284, 114753. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.F.; Ouyang, Z.J.; Feng, L.L.; Chen, G.; Guo, W.J.; Shen, Y.; Wu, X.D.; Sun, Y.; Xu, Q. Suppression of NF-κB signaling and NLRP3 inflammasome activation in macrophages is responsible for the amelioration of experimental murine colitis by the natural compound fraxinellone. Toxicol. Appl. Pharmacol. 2014, 281, 146–156. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward | Accession Number | Product Size (bp) |
---|---|---|---|
β-actin | TCATGAAGTGTGACGTTGACATCCGT | NM_007393.5 | 188 |
TTGCGGTGCACGATGGAGGGGCCGGA | |||
NLRP3 | AGCCTTCCAGGATCCTCTTC | NM_145827.3 | 192 |
CTTGGGCAGCAGTTTCTTTC | |||
Caspase-1 | AGATGGCACATTTCCAGGAC | NM 009807.2 | 245 |
GATCCTCCAGCAGCAACTTC | |||
ASC | GAAGCTGCTGACAGTGCAAC | NM 023258.4 | 226 |
GCCACAGCTCCAGACTCTTC | |||
IL-1β | TGTCCTCATCCTGGAAGGTCCACG | NM_008361.4 | 158 |
CGCAGCAGCACATCAACAAGAGC | |||
iNOS | TCCTCACTGGGACAGCACAGAATG | NM_010927.4 | 214 |
GTGTCATGCAAAATCTCTCCACTGCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Dong, H.; Kong, X.; Li, X.; Chi, X.; Liu, Q.; Yu, X.; Li, W.; Huang, Y. CsNOSIP Reverses NLRP3 Inflammasome Activation Induced by CsESPs via Inducing iNOS and NO Expression and Inhibiting NF-κB Signaling Pathway in Macrophages. Parasitologia 2025, 5, 54. https://doi.org/10.3390/parasitologia5040054
Yang X, Dong H, Kong X, Li X, Chi X, Liu Q, Yu X, Li W, Huang Y. CsNOSIP Reverses NLRP3 Inflammasome Activation Induced by CsESPs via Inducing iNOS and NO Expression and Inhibiting NF-κB Signaling Pathway in Macrophages. Parasitologia. 2025; 5(4):54. https://doi.org/10.3390/parasitologia5040054
Chicago/Turabian StyleYang, Xuran, Huimin Dong, Xiangzhan Kong, Xuerong Li, Xuejing Chi, Qiannan Liu, Xinbing Yu, Wenfang Li, and Yan Huang. 2025. "CsNOSIP Reverses NLRP3 Inflammasome Activation Induced by CsESPs via Inducing iNOS and NO Expression and Inhibiting NF-κB Signaling Pathway in Macrophages" Parasitologia 5, no. 4: 54. https://doi.org/10.3390/parasitologia5040054
APA StyleYang, X., Dong, H., Kong, X., Li, X., Chi, X., Liu, Q., Yu, X., Li, W., & Huang, Y. (2025). CsNOSIP Reverses NLRP3 Inflammasome Activation Induced by CsESPs via Inducing iNOS and NO Expression and Inhibiting NF-κB Signaling Pathway in Macrophages. Parasitologia, 5(4), 54. https://doi.org/10.3390/parasitologia5040054