Microstructural Examination of Molten Marks on Copper Wire for Fire Investigation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Typical Appearance
3.2. Surface Morphology
3.3. Microstructural Characterization
4. Discussion
5. Conclusions
- The major elements discovered on the surface of molten marks are Cu and O. C, Cl, and Ca are the minor elements. Depending on their environment, the foreign elements have different elements.
- The surrounding materials during molten mark formation can be evaluated using elemental analysis via EDS of the polished sample without etching.
- The formation of molten marks on copper wire can be described through microstructural observation in the longitudinal section of the polished sample with etching.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Su, X. Study on Pores Distribution Laws in Secondary Short Circuited Melted Beads of Copper Wires. Procedia Eng. 2014, 84, 887–892. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.P.; Ohtani, H.; Matsubara, Y.; Seki, T.; Hasegawa, H.; Imada, S.; Yashiro, I. Study on Discrimination between Primary and Secondary Molten Marks Using Carbonized Residue. Fire Saf. J. 2002, 37, 353–368. [Google Scholar] [CrossRef]
- Liu, K.H.; Shih, Y.H.; Chen, G.J.; Chou, J.M. Microstructural Study on Molten Marks of Fire-Causing Copper Wires. Materials 2015, 8, 3776–3790. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.P.; Ohtani, H.; Seki, T.; Hasegawa, H.; Imada, S.; Yashiro, I. Study on Discrimination between Primary and Secondary Molten Marks by DAS. Bull. Japan Assoc. Fire Sci. Eng. 2000, 50, 1–12. [Google Scholar]
- Liu, K.H.; Shih, Y.H.; Chen, G.J.; Chou, J.M. Microstructural Study on Oxygen Permeated Arc Beads. J. Nanomater. 2015, 2015, 373861. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.P.; Ohtani, H.; Seki, T.; Hasegawa, H.; Imada, S.; Yashiro, I. A Fundamental Study on Electrical Molten Marks. Bull. Japan Assoc. Fire Sci. Eng. 2001, 51, 1–10. [Google Scholar] [CrossRef]
- Wei, M.M.; Zhao, Z.; Liang, D. Experiment of Electrical Fire Burned Copper Wire and Parameters Analysis on Metallographic Test of Melted Mark. Procedia Eng. 2011, 11, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.M.; Mo, S.J.; Liang, D.; Li, J.B. The Experiment on Melted Mark Formed by Copper Wire in Electrical Fire and the Analytic Researcher on the Feature Parameters of Metallographic Structure. Procedia Eng. 2011, 11, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Babrauskas, V. Arc Beads from Fires: Can “cause” Beads Be Distinguished from “Victim” Beads by Physical or Chemical Testing? J. Fire Prot. Eng. 2004, 14, 125–147. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, C.Z.; Di, M.; Gao, W. The Surface Analysis of Melted Arc Copper Beads. Mater. Sci. Forum 2007, 561, 2455–2458. [Google Scholar] [CrossRef]
- Rawdon, H.S.; Lorentz, M.G. Metallographic Etching Reagents for Copper. Sci. Papres Bur. Stand. 1920, 16, 641–668. [Google Scholar] [CrossRef]
- Oetzow, G. Metallographic Etching, 2nd ed.; ASM International: Materials Park, OH, USA, 1999; p. 88. [Google Scholar]
- Scott, D.A. Metallography and Microstructure of Ancient and Historic Metals; Getty Conservation Institute Publications: Los Angeles, CA, USA, 1991; p. 72. [Google Scholar]
- Gramatyka, P.; Nowosielski, R.; Sakiewicz, P. WEEE Recycling of Waste Electrical and Electronic Equipment. J. Achiev. Mater. Manuf. Eng. 2020, 20, 535–538. [Google Scholar]
- NFPA 921. Guide for Fire and Explosion Investigations; National Fire Protection Association: Quincy, MA, USA, 2017; pp. 119–135. [Google Scholar]
- de Carvalho, A.V. Effects of Potassium and Calcium on the Combustion Behaviour of Biomass. Master’s Thesis, University of Lisbon, Lisboa, Portugal, July 2017. [Google Scholar]
- Properties of Solders—2019, Farnell. Available online: https://www.farnell.com/datasheets/315929.pdf (accessed on 31 October 2022).
- Howell, K.; Sweatman, K.; Miyaoka, M.; Nishimura, T.; Tran, X.Q.; Mcdonald, S.; Nogita, K. Microalloyed Sn-Cu Pb-Free Solder for High Temperature Applications. In Proceedings of the Surface Mount Technology Association (SMTA), Fort Worth, TX, USA, 13–17 October 2013; SMTA: Eden Prairie, MN, USA, 2013. [Google Scholar]
- Mohd, N.M.; Bukhari, M.Z.; Noor, N.A.M.; Jamaludin, S.B. Effect of Temperature to the Microstructure of Sn-Pb Solder Alloy. In Proceedings of the National Metallurgical Conference, Kangar, Malaysia, 9–10 December 2006. [Google Scholar] [CrossRef]
- Michael, A.; Hugh, S.; David, C. Materials Engineering, Science, Processing and Design; Butterworth-Heinemann Elsevier Ltd.: Oxford, UK, 2007; pp. 390–392. [Google Scholar]
- Kurz, W.; Fisher, D.J. Fundamentals of Solidification, 3rd ed.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 1989; p. 86. [Google Scholar]
- Qin, S.; Bendo, A.; Tsuchiya, T.; Lee, S.; Zou, Y.; Matsuda, K. Effect of Cooling Rate on Precipitation during Homogenization Cooling in Balanced AlMg2Si Alloy. Mater. Trans. 2020, 61, 2115–2120. [Google Scholar] [CrossRef]
- Flemings, M.C. Coarsening in Solidification Processing. Mater. Trans. 2005, 46, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Glicksman, M.E.; Voorhees, P.W. Ostwald Ripening and Relaxation in Dendritic Structures. Metall. Trans. A Phys. Metall. Mater. Sci. 1984, 15, 995–1001. [Google Scholar] [CrossRef]
- William, D.; Callister, J.; Rethwisch, D.G. Fundamentals of Materials Science and Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 459–466. [Google Scholar]
Fire Scene Number | Wire Type | Wire Diameter (mm) |
---|---|---|
FS1-1 | stranded wire | 4.65 |
FS1-2 | stranded wire | 4.65 |
FS2-1 | single | 1.7 |
FS2-2 | stranded wire | 1 |
FS3 | stranded wire | 1 |
FS4 | stranded wire | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachana, S.; Morishita, K.; Miyahara, H. Microstructural Examination of Molten Marks on Copper Wire for Fire Investigation. Forensic Sci. 2023, 3, 12-19. https://doi.org/10.3390/forensicsci3010002
Sachana S, Morishita K, Miyahara H. Microstructural Examination of Molten Marks on Copper Wire for Fire Investigation. Forensic Sciences. 2023; 3(1):12-19. https://doi.org/10.3390/forensicsci3010002
Chicago/Turabian StyleSachana, Suphattra, Kohei Morishita, and Hirofumi Miyahara. 2023. "Microstructural Examination of Molten Marks on Copper Wire for Fire Investigation" Forensic Sciences 3, no. 1: 12-19. https://doi.org/10.3390/forensicsci3010002
APA StyleSachana, S., Morishita, K., & Miyahara, H. (2023). Microstructural Examination of Molten Marks on Copper Wire for Fire Investigation. Forensic Sciences, 3(1), 12-19. https://doi.org/10.3390/forensicsci3010002