Leaf Organogenesis Improves Recovery of Solid Polyploid Shoots from Chimeric Southern Highbush Blueberry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Flowcytometry Analysis
- Mixoploid Explant Tissue Culture:
2.3. Explant Measurements
2.4. Rooting of Plantlets
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fritsch, P.W.; Crowl, A.A.; Ashrafi, H.; Manos, P.S. Systematics and evolution of Vaccinium sect. Cyanococcus (Ericaceae): Progress and prospects. Rhodora 2024, 124, 301–332. [Google Scholar] [CrossRef]
- Vander Kloet, S.P. The Genus Vaccinium in North America; Agriculture Canada Research Branch: Ottawa, ON, Canada, 1988. [Google Scholar]
- Coville, F.V. Experiments in Blueberry Culture; Kessinger Publishing: La Vergne, TN, USA, 1910. [Google Scholar]
- Longley, A. Chromosomes in Vaccinium. Science 1927, 66, 566–568. [Google Scholar] [CrossRef] [PubMed]
- Coville, F.V. Blueberry chromosomes. Science 1927, 66, 565–566. [Google Scholar] [CrossRef]
- Hancock, J.F. Temperate Fruit Crop Breeding: Germplasm to Genomics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Brevis, P.A.; Bassil, N.V.; Ballington, J.R.; Hancock, J.F. Impact of wide hybridization on highbush blueberry breeding. J. Am. Soc. Hort. Sci. 2008, 133, 427–437. [Google Scholar] [CrossRef]
- Boches, P.; Bassil, N.V.; Rowland, L. Genetic diversity in the highbush blueberry evaluated with microsatellite markers. J. Am. Soc. Hort. Sci. 2006, 131, 674–686. [Google Scholar] [CrossRef]
- Bian, Y.; Ballington, J.; Raja, A.; Brouwer, C.; Reid, R.; Burke, M.; Wang, X.; Rowland, L.J.; Bassil, N.; Brown, A. Patterns of simple sequence repeats in cultivated blueberries (Vaccinium section cyanococcus spp.) and their use in revealing genetic diversity and population structure. Mol. Breed. 2014, 34, 675–689. [Google Scholar] [CrossRef]
- Manzanero, B.R.; Kulkarni, K.P.; Vorsa, N.; Reddy, U.K.; Natarajan, P.; Elavarthi, S.; Iorizzo, M.; Melmaiee, K. Genomic and evolutionary relationships among wild and cultivated blueberry species. BMC Plant Biol. 2023, 23, 126. [Google Scholar] [CrossRef] [PubMed]
- Lyrene, P.; Vorsa, N.; Ballington, J. Polyploidy and sexual polyploidization in the genus Vaccinium. Euphytica 2003, 133, 27–36. [Google Scholar] [CrossRef]
- Moore, J.N. Breeding. In Blueberry Culture; Eck, P., Childers, N.F., Eds.; Rutgers University Press: New Brunswick, NJ, USA, 1966; pp. 45–74. [Google Scholar]
- Galletta, G.J. Blueberries and cranberries. In Advances in Fruit Breeding; Moore, J.N., Janick, J., Eds.; Purdue University Press: Lafayette, IN, USA, 1975; pp. 154–196. [Google Scholar]
- Rousi, A. Hybridization between Vaccinium uliginosum and cultivated blueberry. Ann. Agric. Fenn. 1963, 2, 12–18. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19630306864 (accessed on 1 June 2025).
- Rousi, A. Cytological observations on some species and hybrids of Vaccinium. Der Zücht. 1966, 36, 352–359. [Google Scholar] [CrossRef]
- Dweikat, I.; Lyrene, P. Production and evaluation of a synthetic hexaploid in blueberry. Theor. Appl. Genet. 1989, 77, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Dweikat, I.M.; Lyrene, P. Induced tetraploidy in a Vaccinium elliottii facilitates crossing with cultivated highbush blueberry. J. Am. Soc. Hort. Sci. 1991, 116, 1063–1066. [Google Scholar] [CrossRef]
- Chavez, D.J.; Lyrene, P. Interspecific crosses and backcrosses between diploid Vaccinium darrowii and tetraploid southern highbush blueberry. J. Am. Soc. Hort. Sci. 2009, 134, 273–280. [Google Scholar] [CrossRef]
- Ehlenfeldt, M.K. Production of dwarfs in rabbiteye blueberry (V. virgatum Aiton) crosses. J. Am. Pomol. Soc. 2021, 75, 31–37. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20210230983 (accessed on 1 June 2025).
- Lyrene, P.; Sherman, W. Mitotic instability and 2n gamete production in Vaccinium corymbosum × V. elliottii hybrids. J. Am. Soc. Hort. Sci. 1983, 108, 339–342. [Google Scholar] [CrossRef]
- Megalos, B.S.; Ballington, J.R. Unreduced pollen frequencies versus hybrid production in diploid-tetraploid Vaccinium crosses. Euphytica 1988, 39, 271–278. [Google Scholar] [CrossRef]
- Vorsa, N.; Ballington, J.R. Fertility of triploid highbush blueberry. J. Am. Soc. Hort. Sci. 1991, 116, 336–341. [Google Scholar] [CrossRef]
- Norden, E.H.; Lyrene, P.; Chaparro, J.X. Ploidy, fertility, and phenotypes of F1 hybrids between tetraploid highbush blueberry cultivars and diploid Vaccinium elliottii. HortScience 2020, 55, 281–286. [Google Scholar] [CrossRef]
- Ballington, J.R. Collection, utilization, and preservation of genetic resources in Vaccinium. HortScience 2001, 36, 213–220. [Google Scholar] [CrossRef]
- Ballington, J.R.; Rooks, S.D.; Cline, W.O.; Meyer, J.R.; Milholland, R.D. The North Carolina State University Blueberry breeding program-toward V. Covilleanum? VI Int. Sym. Vac. Cult. 1996, 446, 243–250. [Google Scholar] [CrossRef]
- Draper, A.; Hancock, J. Florida 4B: Native blueberry with exceptional breeding value. J. Am. Pom. Soc. 2003, 57, 138. Available online: https://www.proquest.com/scholarly-journals/florida-4b-native-blueberry-with-exceptional/docview/209776281/se-2 (accessed on 1 June 2025).
- Lyrene, P. Fecundity of crosses between tetraploid and hexaploid Vaccinium. J. Am. Soc. Hort. Sci. 1988, 113, 592–595. [Google Scholar] [CrossRef]
- Chu, Y.; Lyrene, P. Artificial induction of polyploidy in blueberry breeding: A review. HortScience 2025, 60, 100–110. [Google Scholar] [CrossRef]
- Lyrene, P.M. First report of Vaccinium arboreum hybrids with cultivated highbush blueberry. HortScience 2011, 46, 563–566. [Google Scholar] [CrossRef]
- Lyrene, P.M. Florida native blueberries and their use in breeding. Acta Hortic. 2016, 1180, 9–16. [Google Scholar] [CrossRef]
- Lyrene, P.M.; Olmstead, J.W. The use of inter-sectional hybrids in blueberry breeding. Int. J. Fruit Sci. 2012, 12, 269–275. [Google Scholar] [CrossRef]
- Lyrene, P.M. Fertility and other characteristics of F1 and backcross1 progeny from an intersectional blueberry cross [(highbush cultivar× Vaccinium arboreum) × highbush cultivar]. HortScience 2013, 48, 146–149. [Google Scholar] [CrossRef]
- Marangelli, F.; Pavese, V.; Vaia, G.; Lupo, M.; Bashir, M.A.; Cristofori, V.; Silvestri, C. In vitro polyploid induction of highbush blueberry through de novo shoot organogenesis. Plants 2022, 11, 2349. [Google Scholar] [CrossRef]
- Lei, L.; Liu, G.; Yan, D.; Zhang, M.; Cui, Q.; Zhao, Q.; Chu, L.; Wen, L.; Wang, L.; Du, Q.; et al. Manipulation of ploidy for blueberry breeding: In vitro chromosome doubling of diploid Vaccinium duclouxii (Lévl.) Hand.-Mazz by trifluralin. Sci. Hort. 2023, 317, 112056. [Google Scholar] [CrossRef]
- Lineberger, R.D. Origin, development, and propagation of chimaeras. Foliage Dig. 1983, 6, 5–8. [Google Scholar]
- Geier, T. Chimeras: Properties and dissociation in vegetatively propagated plants. In Plant Mutation Breeding and Biotechnology; CABI: Wallingford, UK, 2012; pp. 191–201. [Google Scholar]
- Dermen, H. Periclinal cytochimeras and histogenesis in cranberry. Am. J. Bot. 1947, 34, 32–43. [Google Scholar] [CrossRef]
- Coyner, M.A.; Skirvin, R.M.; Norton, M.A.; Otterbacher, A.G. Thornlessness in Blackberries. Sm. Fruits Rev. 2005, 4, 83–106. [Google Scholar] [CrossRef]
- Miyashita, C.; Ishikawa, S.; Mii, M. In vitro induction of the amphiploid in interspecific hybrid of blueberry (Vaccinium corymbosum × Vaccinium ashei) with colchicine treatment. Sci. Hort. 2009, 122, 375–379. [Google Scholar] [CrossRef]
- Eng, W.-H.; Ho, W.-S. Polyploidization using colchicine in horticultural plants: A review. Sci. Hort. 2019, 246, 604–617. [Google Scholar] [CrossRef]
- Zhou, H.-w.; Zeng, W.-D.; Yan, H.-b. In vitro induction of tetraploids in cassava variety ‘Xinxuan 048’using colchicine. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 128, 723–729. [Google Scholar] [CrossRef]
- Roy, A.T.; Leggett, G.; Koutoulis, A. In vitro tetraploid induction and generation of tetraploids from mixoploids in hop (Humulus lupulus L.). Plant Cell Rep. 2001, 20, 489–495. [Google Scholar] [CrossRef]
- Chen, L.-L.; Gao, S.-L. In vitro tetraploid induction and generation of tetraploids from mixoploids in Astragalus membranaceus. Sci. Hortic. 2007, 112, 339–344. [Google Scholar] [CrossRef]
- Roux, N.; Dolezel, J.; Swennen, R.; Zapata-Arias, F.J. Effectiveness of three micropropagation techniques to dissociate cytochimeras in Musa spp. Plant Cell Tiss. Organ Cult. 2001, 66, 189–197. [Google Scholar] [CrossRef]
- Lyrene, P. Micropropagation of rabbiteye blueberries. HortScience 1980, 15, 80–81. [Google Scholar] [CrossRef]
- Frett, J.J.; Smagula, J.M. In vitro shoot production of lowbush blueberry. Can. J. Plant Sci. 1983, 63, 467–472. [Google Scholar] [CrossRef]
- Wolfe, D.; Eck, P.; Chin, C.-K. Evaluation of seven media for micropropagation of highbush blueberry. HortScience 1983, 18, 703–705. [Google Scholar] [CrossRef]
- Chandler, C.K.; Draper, A.D. Effect of zeatin and 2iP on shoot proliferation of three highbush blueberry clones in vitro. HortScience 1986, 21, 1065–1066. [Google Scholar] [CrossRef]
- Grout, J.M.; Read, P.E. Influence of stock plant propagation method on tissue culture and leaf-bud propagation of ‘Northblue’ blueberry. J. Am. Soc. HortSci. 1986, 111, 368–371. [Google Scholar] [CrossRef]
- Brissette, L.; Tremblay, L.; Lord, D. Micropropagation of lowbush blueberry from mature field-grown plants. HortScience 1990, 25, 349–351. [Google Scholar] [CrossRef]
- Debnath, S.C. In vitro culture of lowbush blueberry (Vaccinium angustifolium Ait.). Sm. Fruits Rev. 2004, 3, 393–408. [Google Scholar] [CrossRef]
- Ostrolucká, M.G.; Libiaková, G.; Ondrußková, E.; Gajdoßová, A. In vitro propagation of In vitro Vaccinium species Vaccinium. Acta Univ. Latv. 2004, 676, 207–676. [Google Scholar]
- Gajdosova, A.; Ostrolucká, M.G.; Libiaková, G.; Ondrušková, E.; Šimala, D. Microclonal propagation of Vaccinium sp. and Rubus sp. and detection of genetic variability in culture in vitro. J. Fruit Ornam. Plant Res. 2006, 14, 103–119. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20063166178 (accessed on 1 June 2025).
- Jain, S.M.; Häggman, H. Protocols for Micropropagation of Woody Trees and Fruits; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ružić, D.; Vujović, T.; Libiakova, G.; Cerović, R.; Gajdošova, A. Micropropagation in vitro of highbush blueberry (Vaccinium corymbosum L.). J. Berry Res. 2012, 2, 97–103. [Google Scholar] [CrossRef]
- Vescan, L.A.; Pamfil, D.O.; Clapa, D.; Fira, A.L.; Sisea, C.R.; Pop, I.F.; Petricele, I.A.; Ciuzan, O.; Opo, R. Efficient micropropagation protocol for highbush blueberry (Vaccinium corymbosum L.) cv.‘Elliot’. Roman. Biotechnol. Lett. 2012, 17, 6893–6902. [Google Scholar]
- Fan, S.; Jian, D.; Wei, X.; Chen, J.; Beeson, R.C.; Zhou, Z.; Wang, X. Micropropagation of blueberry ‘Bluejay’ and ‘Pink Lemonade’ through in vitro shoot culture. Sci. Hort. 2017, 226, 277–284. [Google Scholar] [CrossRef]
- Schuchovski, C.S.; Biasi, L.A. In vitro establishment of ‘Delite’ rabbiteye blueberry microshoots. Horticulturae 2019, 5, 24. [Google Scholar] [CrossRef]
- Cappai, F.; Garcia, A.; Cullen, R.; Davis, M.; Munoz, P.R. Advancements in low-chill blueberry Vaccinium corymbosum L. tissue culture practices. Plants 2020, 9, 1624. [Google Scholar] [CrossRef]
- Kharel, P.; Creech, M.R.; Nguyen, C.D.; Vendrame, W.A.; Munoz, P.R.; Huo, H. Effect of explant type, culture medium, and BAP concentration on in vitro shoot development in highbush blueberry (Vaccinium corymbosum L.) cultivars. Vitro Cell. Dev. Biol. Plant 2022, 58, 1057–1065. [Google Scholar] [CrossRef]
- Schuchovski, C.; Biasi, L.A. Micropropagation of Vaccinium virgatum ‘Delite’: A rabbiteye cultivar adapted to mild winters. Plant Biosyst. 2022, 156, 1117–1128. [Google Scholar] [CrossRef]
- Billings, S.G.; Chin, C.K.; Jelenkovic, G. Regeneration of blueberry plantlets from leaf segments. HortScience 1988, 23, 763–766. [Google Scholar] [CrossRef]
- Dweikat, I.; Lyrene, P. Production and viability of unreduced gametes in triploid interspecific blueberry hybrids. TAG 1988, 76, 555–559. [Google Scholar] [CrossRef]
- Callow, P.; Haghighi, K.; Giroux, M.; Hancock, J. In vitro shoot regeneration on leaf tissue from micropropagated highbush blueberry. HortScience 1989, 24, 373–375. [Google Scholar] [CrossRef]
- Rowland, L.J.; Ogden, L.E. Use of a cytokinin conjugate for efficient shoot regeneration from leaf sections of highbush blueberry. HortScience 1992, 27, 1127–1129. [Google Scholar] [CrossRef]
- NeSmith, D.S. ‘Rebel’ southern highbush blueberry. HortScience 2008, 43, 1592–1593. [Google Scholar] [CrossRef]
- Lyrene, P.M. ‘Emerald’ southern highbush Blueberry. HortScience 2008, 43, 1606–1607. [Google Scholar] [CrossRef]
- Debnath, S.C. Propagation of Vaccinium in vitro: A review. Int. J. Fruit Sci. 2007, 6, 47–71. [Google Scholar] [CrossRef]
- Cao, X.; Hammerschlag, F. Improved shoot organogenesis from leaf explants of highbush blueberry. HortScience 2000, 35, 945–947. [Google Scholar] [CrossRef]
- Meiners, J.; Schwab, M.; Szankowski, I. Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tissue Organ Cult. (PCTOC) 2007, 89, 169–176. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Liu, J.; Pan, C.; Yu, J.W.; Wang, Q.C. In vitro regeneration of adventitious buds from leaf explants and their subsequent cryopreservation in highbush blueberry. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 134, 193–204. [Google Scholar] [CrossRef]
- Chavez, D.J.; Lyrene, P. Production and identification of colchicine-derived tetraploid Vaccinium darrowii and its use in breeding. J. Am. Soc. Hort. Sci. 2009, 134, 356–363. [Google Scholar] [CrossRef]
- Qiu, D.; Wei, X.; Fan, S.; Jian, D.; Chen, J. Regeneration of blueberry cultivars through indirect shoot organogenesis. HortScience 2018, 53, 1045–1049. [Google Scholar] [CrossRef]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The polyploidy and its key role in plant breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef]
- Goldy, R.G.; Lyrene, P. In vitro colchicine treatment of 4x blueberries, Vaccinium sp. J. Am. Soc. Hort. Sci. 1984, 109, 336–338. [Google Scholar] [CrossRef]
- Kazemian, M.; Ghasemi Omran, V.O.; Mohajel Kazemi, E.; Kolahi, M. Regeneration of pinwheel phenotype and evaluation of anthocyanin in African violet (Saintpaulia ionantha Wendl.) periclinal chimera. J. Plant Mol. Breed. 2021, 7, 39–49. [Google Scholar] [CrossRef]
- Marcotrigiano, M. Origin of adventitious shoots regenerated from cultured tobacco leaf tissue. Am. J. Bot. 1986, 73, 1541–1547. [Google Scholar] [CrossRef]
- Liu, C.; Callow, P.; Rowland, L.J.; Hancock, J.F.; Song, G. Adventitious shoot regeneration from leaf explants of southern highbush blueberry cultivars. Plant Cell Tissue Organ Cult. (PCTOC) 2010, 103, 137–144. [Google Scholar] [CrossRef]
Media Name | Composition |
---|---|
Woody Plant Medium 1 (WPM1) | WPM (1x), 3% Sucrose (w/v), 0.8% Agar and 0.5 mg/L zeatin, pH 5.2 |
WPM2 | WPM (1x), 3% Sucrose (w/v), 0.8% Agar, 3 mg/L zeatin and 0.5 mg/L IBA (Indole-3-butyric acid), pH 5.2 |
WPM3 | WPM (1x), 3% Sucrose (w/v), 0.8% Agar and 1 mg/L zeatin, pH 5.2 |
WPM4 | WPM (1x), 3% Sucrose (w/v), 0.8% Agar, 2 mg/L zeatin and 0.5 mg/L IBA, pH 5.2 |
WPM5 | WPM (1x), 3% Sucrose (w/v), 0.8% Agar, 1 mg/L zeatin and 0.5 mg/L IBA, pH 5.2 |
Genotype | Mutant Lines | Screened Explant | Octoploid | Tetraploid | Mixoploid | % Solid Polyploid | % Mixoploid |
---|---|---|---|---|---|---|---|
Emerald | 145.11 | 4 | 1 | 0 | 3 | 25% | 75% |
Emerald | 169.40 | 5 | 0 | 1 | 4 | 20% | 80% |
Emerald | 173.68 | 3 | 0 | 2 | 1 | 67% | 33% |
Emerald | 187.91 | 4 | 0 | 3 | 1 | 75% | 25% |
Rebel | 143.11 | 3 | 0 | 2 | 1 | 67% | 33% |
Rebel | 143.13 | 18 | 1 | 14 | 3 | 83% | 17% |
Rebel | 143.15 | 10 | 0 | 3 | 7 | 30% | 70% |
Rebel | 175.35 | 2 | 0 | 0 | 2 | 0% | 100% |
Rebel | 175.40 | 2 | 0 | 0 | 2 | 0% | 100% |
Rebel | 178.57 | 5 | 0 | 0 | 5 | 0% | 100% |
Rebel | 179.68 | 3 | 0 | 0 | 3 | 0% | 100% |
Rebel | 188.95 | 4 | 0 | 3 | 1 | 75% | 25% |
Rebel | 194.156 | 3 | 0 | 1 | 2 | 33% | 67% |
total | 66 | 2 | 29 | 35 | |||
average | 5.1 | 0.2 | 2.2 | 2.7 | 37% | 63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walter, E.; Biswal, A.; Ozias-Akins, P.; Chu, Y. Leaf Organogenesis Improves Recovery of Solid Polyploid Shoots from Chimeric Southern Highbush Blueberry. BioTech 2025, 14, 48. https://doi.org/10.3390/biotech14020048
Walter E, Biswal A, Ozias-Akins P, Chu Y. Leaf Organogenesis Improves Recovery of Solid Polyploid Shoots from Chimeric Southern Highbush Blueberry. BioTech. 2025; 14(2):48. https://doi.org/10.3390/biotech14020048
Chicago/Turabian StyleWalter, Emily, Akshaya Biswal, Peggy Ozias-Akins, and Ye Chu. 2025. "Leaf Organogenesis Improves Recovery of Solid Polyploid Shoots from Chimeric Southern Highbush Blueberry" BioTech 14, no. 2: 48. https://doi.org/10.3390/biotech14020048
APA StyleWalter, E., Biswal, A., Ozias-Akins, P., & Chu, Y. (2025). Leaf Organogenesis Improves Recovery of Solid Polyploid Shoots from Chimeric Southern Highbush Blueberry. BioTech, 14(2), 48. https://doi.org/10.3390/biotech14020048