Next Issue
Volume 3, December
Previous Issue
Volume 3, June
 
 

Radiation, Volume 3, Issue 3 (September 2023) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 2387 KiB  
Article
Early and Transient Formation of Highly Acidic pH Spikes in Water Radiolysis under the Combined Effect of High Dose Rate and High Linear Energy Transfer
by Md Ibrahim Bepari, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Radiation 2023, 3(3), 165-182; https://doi.org/10.3390/radiation3030014 - 11 Sep 2023
Viewed by 1301
Abstract
(1) Background: Water radiolysis leads to the formation of hydronium ions H3O+ in less than 50 fs, resulting in the formation of transient acidic pH spikes in the irradiated water. The purpose of this study is to examine the time [...] Read more.
(1) Background: Water radiolysis leads to the formation of hydronium ions H3O+ in less than 50 fs, resulting in the formation of transient acidic pH spikes in the irradiated water. The purpose of this study is to examine the time evolution of these spikes of acidity under irradiation conditions combining both high absorbed dose rate and high-LET radiation. (2) Methods: The early space–time history of the distributions of the various reactive species was obtained using our Monte Carlo multitrack chemistry simulation code IONLYS-IRT. To simulate different LETs, we used incident protons of varying energies as radiation sources. The “instantaneous pulse” (or Dirac) model was used to investigate the effect of dose rate. (3) Results: One major finding is that the combination of high dose rates and high LETs is clearly additive, with a very significant impact on the pH of the solution. For example, at 1 ns and for a dose rate of ~107 Gy/s, the pH drops from ~4.7 to 2.7 as the LET increases from ~0.3 to 60 keV/μm. (4) Conclusions: Confirming previous work, this purely radiation chemical study raises the question of the possible importance and role of these spikes of acidity in underpinning the physical chemistry and biology of the “FLASH effect”. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

12 pages, 2568 KiB  
Article
In Vitro Radioenhancement Using Ultrasound-Stimulated Microbubbles: A Comparison of Suspension and Adherent Cell States
by Giulia McCorkell, Masao Nakayama, Bryce Feltis, Terrence J. Piva and Moshi Geso
Radiation 2023, 3(3), 153-164; https://doi.org/10.3390/radiation3030013 - 10 Aug 2023
Viewed by 1088
Abstract
Background: Ultrasound-stimulated microbubbles (USMB) have shown potential for enhancing radiation treatment via cavitation and sonoporation mechanisms. However, in vitro studies have produced inconsistent results, with adherent cells demonstrating no radioenhancement. This study aims to investigate the effect of cell adherence on in vitro [...] Read more.
Background: Ultrasound-stimulated microbubbles (USMB) have shown potential for enhancing radiation treatment via cavitation and sonoporation mechanisms. However, in vitro studies have produced inconsistent results, with adherent cells demonstrating no radioenhancement. This study aims to investigate the effect of cell adherence on in vitro radioenhancement using USMB and radiation. Method: Lung metastases of follicular thyroid carcinoma cells (FTC-238) and non-small cell lung carcinoma cells (NCI-H727) were treated, both when adhered and in suspension, using 1.6% (v/v) Definity™ microbubbles, ~90 s of 2 MHz ultrasound with mechanical index 0.9, and either 3 Gy or 6 Gy of megavoltage (MV) X-rays. The cell viability was measured using an MTS assay 72 h post-treatment, and statistical analysis was conducted using a three-way analysis of variance. Results: Statistically significant differences were observed for cells treated when adherent compared to suspended. An additive effect was detected in NCI-H727 cells treated in suspension, but not while adherent, while no enhancement was observed for FTC-238 cells in either culture state. Conclusions: To the best of our knowledge, this is the first study to directly compare the effect of cell adherence on the radioenhancement potential of USMB in vitro, and the first to do so using a metastatic cell line. Full article
Show Figures

Figure 1

15 pages, 2547 KiB  
Article
An Advanced Optimization Method to Minimize the Detection Limit of Liquid Scintillation Counter to Measure Low-Level Tritium Activity in Groundwater
by Al Mamun
Radiation 2023, 3(3), 138-152; https://doi.org/10.3390/radiation3030012 - 26 Jul 2023
Cited by 1 | Viewed by 1519
Abstract
In arid regions, the tritium concentration in groundwater is typically very low and often falls below the minimum detectable activity (MDA) of the conventional liquid scintillation counter (LSC). Therefore, to measure the tritium activity concentration, it is necessary to lower the detection limit [...] Read more.
In arid regions, the tritium concentration in groundwater is typically very low and often falls below the minimum detectable activity (MDA) of the conventional liquid scintillation counter (LSC). Therefore, to measure the tritium activity concentration, it is necessary to lower the detection limit so that the scintillation counter can detect it. In the present study, several methods are discussed which are effective at lowering the detectable activity of tritium. One of these methods is to enrich the tritium activity concentration by ten- to fortyfold of the initial concentration of the tritium. Twelve spiked samples with known amounts of tritium, five with high concentrations and seven with low concentrations, were enriched by the electrolysis process. The results indicated that enriching the tritium levels in groundwater lowers the MDA value. Other methods are minimizing background radiation using low-background materials for sample containers, increasing the measurement efficiency of the scintillation counter and counting time, and shielding the sample from environmental radiation using the shutter option in LSC. Moreover, reducing the number of interfering contaminants in the sample can lower the uncertainty in measuring the tritium concentration in the water sample, which is beneficial for detecting low-level tritium in water to ensure public health and safety. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop