Impact of Rossby Waves Breaking on the Heavy Rainfall in the Selenga River Basin in July †
Abstract
:1. Introduction
2. Experiments
2.1. Data
2.2. Method
3. Results
- CWB_I (11 events)—precipitation accompanies by CWB, but in the mature stage, the breaking is located eastward of the Selenga basin. The Selenga basin is located in the stage of growth wave (CWB_I).
- AWB_I (12 Events)—precipitation accompanies by AWB, but in the mature stage, the breaking is located eastward of the Selenga basin. The Selenga basin is located in the stage of growth wave (Figure 4).
- AWB_on—usually preceded by the abovementioned CWB or AWB (Figure 5) and located westward of the the Selenga basin. In 3 cases, AWB_on preceded by CWB, which took place far eastward of the Selenga basin (12.07. 1982, 1983, and 26.07.1991). Usually, the AWB_on occurred in northern regions of Eurasia (polar jet stream), whereas the CWB_on\I and AWB_I took place in the southern region of Eurasia (subtropical jet stream).
- WB (without breaking, 12 events)—propagating of PV-disturbances did not accompany wave breaking.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berezhnykh, T.V.; Marchenko, O.Y.; Abasov, N.V.; Mordvinov, V.I. Changes in the summertime atmospheric circulation over East Asia and formation of long-lasting low-water periods within the Selenga river basin. Geogr. Nat. Resour. 2012, 33, 223–229. [Google Scholar] [CrossRef]
- Sinyukovich, V.N.; Sizova, L.N.; Shimaraev, M.N.; Kurbatova, N.N. Characteristics of current changes in water inflow into Lake Baikal. Geogr. Nat. Resour. 2013, 34, 350–355. [Google Scholar] [CrossRef]
- Antokhina, O.Y.; Latysheva, I.V.; Mordvinov, V.I. A Cases Study Of Mongolian Cyclogenesis During The July 2018 Blocking Events. Geogr. Environ. Sustain. 2019, 12, 66–78. [Google Scholar] [CrossRef]
- Antokhina, O.Y.; Antokhin, P.N.; Martynova, Y.V.; Mordvinov, V.I. The Linkage of the Precipitation in the Selenga River Basin to Midsummer Atmospheric Blocking. Atmosphere 2019, 10, 343. [Google Scholar] [CrossRef]
- Davi, N.K.; Pederson, N.; Leland, C.; Nachin, B.; Suran, B.; Jacoby, G.C. Is eastern Mongolia drying? A long-term perspective of a multidecadal trend. Water Resour. Res. 2013, 49, 151–158. [Google Scholar] [CrossRef]
- Schubert, S.D.; Wang, H.; Koster, R.D.; Suarez, M.J.; Groisman, P.Y. Northern Eurasian Heat Waves and Droughts. J. Clim. 2014, 27, 3169–3207. [Google Scholar] [CrossRef]
- Obyazov, V.A. Regional response of surface air temperatures to global changes: Evidence from the Transbaikal region. Dokl. Earth Sci. 2015, 461, 375–378. [Google Scholar] [CrossRef]
- Erdenebat, E.; Sato, T. Recent increase in heat wave frequency around Mongolia: Role of atmospheric forcing and possible influence of soil moisture deficit. Atmospheric Sci. Lett. 2016, 17, 135–140. [Google Scholar] [CrossRef]
- Hessl, A.E.; Anchukaitis, K.J.; Jelsema, C.; Cook, B.; Byambasuren, O.; Leland, C.; Nachin, B.; Pederson, N.; Tian, H.; Hayles, L.A. Past and future drought in Mongolia. Sci. Adv. 2018, 4, e1701832. [Google Scholar] [CrossRef]
- Kasimov, N.; Karthe, D.; Chalov, S. Environmental change in the Selenga River—Lake Baikal Basin. Reg. Environ. Chang. 2017, 17, 1945–1949. [Google Scholar] [CrossRef]
- Chalov, S.R.; Jarsjö, J.; Kasimov, N.S.; Romanchenko, A.O.; Pietroń, J.; Thorslund, J.; Promakhova, E.V. Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environ. Earth Sci. 2015, 73, 663–680. [Google Scholar] [CrossRef]
- Moreido, V.M.; Kalugin, A.S. Assessing possible changes in Selenga R. water regime in the XXI century based on a runoff formation model. Water Resour. 2017, 44, 390–398. [Google Scholar] [CrossRef]
- Frolova, N.L.; Belyakova, P.A.; Grigoriev, V.Y.; Sazonov, A.A.; Zotov, L.V.; Jarsjö, J. Runoff fluctuations in the Selenga River Basin. Reg. Environ. Chang. 2017, 17, 1965–1976. [Google Scholar] [CrossRef]
- Ilicheva, E.; Pavlov, M.; Shchipanova, E.; Gavrilova, A. Relief formation of the Selenga River delta in different periods of water content during the technogenic stage of development. E3S Web Conf. 2020, 163, 05004. [Google Scholar] [CrossRef]
- Iwasaki, H.; Nii, T. The Break in the Mongolian Rainy Season and Its Relation to the Stationary Rossby Wave along the Asian Jet. J. Clim. 2006, 19, 3394–3405. [Google Scholar] [CrossRef]
- Li, J.; Ruan, C. Corrigendum: The North Atlantic-Eurasian teleconnection in summer and its effects on Eurasian climates (2018 Environ. Res. Lett. 13 024007). Environ. Res. Lett. 2018, 13, 129501. [Google Scholar] [CrossRef]
- Iwao, K.; Takahashi, M. A Precipitation Seesaw Mode between Northeast Asia and Siberia in Summer Caused by Rossby Waves over the Eurasian Continent. J. Clim. 2008, 21, 2401–2419. [Google Scholar] [CrossRef]
- Chyi, D.; Xie, Z.; Shi, N.; Guo, P.; Wang, H. Wave-Breaking Features of Blocking over Central Siberia and Its Impacts on the Precipitation Trend over Southeastern Lake Baikal. Adv. Atmos. Sci. 2019, 37, 75–89. [Google Scholar] [CrossRef]
- Martius, O.; Zenklusen, E.; Schwierz, C.; Davies, H.C. Episodes of alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology. Int. J. Clim. 2006, 26, 1149–1164. [Google Scholar] [CrossRef]
- Appenzeller, C.; Davies, H.C. Structure of stratospheric intrusions into the troposphere. Nat. Cell Biol. 1992, 358, 570–572. [Google Scholar] [CrossRef]
- Awan, N.K.; Formayer, H. Cutoff low systems and their relevance to large-scale extreme precipitation in the European Alps. Theor. Appl. Clim. 2016, 129, 149–158. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Rosnay, P.D.; Tavolato, C.; Thépaut, J.-N.; Vitart, F.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Ziese, M.; Rauthe-Schöch, A.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schneider, U. GPCC Full Data Daily Version. 2018 at 1.0°: Daily Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. 2018. Available online: https://opendata.dwd.de/climate_environment/GPCC/html/gpcc_firstguess_daily_doi_download.html (accessed on 1 October 2020.).
- Schamm, K.; Coauthors. 2013: GPCC First Guess Daily Product at 1.0°: Near Real-Time First Guess Daily Land-Surface Precipitation from Rain-Gauges based on SYNOP Data. Available online: https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-daily_v2018_doi_download.html (accessed on 1 October 2020.).
- Postel, G.A.; Hitchman, M.H. A Climatology of Rossby Wave Breaking along the Subtropical Tropopause. J. Atmos. Sci. 1999, 56, 359–373. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Hoskins, B.J.; Mcintyre, M.E. Two paradigms of baroclinic-wave life-cycle behaviour. Q. J. R. Meteorol. Soc. 1993, 119, 17–55. [Google Scholar] [CrossRef]
- Strong, C.; Magnusdottir, G. Tropospheric Rossby Wave Breaking and the NAO/NAM. J. Atmos. Sci. 2008, 65, 2861–2876. [Google Scholar] [CrossRef]
- Barnes, E.A.; Hartmann, D.L. Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. J. Geophys. Res. Space Phys. 2012, 117, 117. [Google Scholar] [CrossRef]
- Antokhina, O.Y. Atmospheric Precipitation Within the Selenga River Basin and Large-Scale Atmospheric Circulation Over Eurasia in July. Geogr. Nat. Resour. 2019, 40, 373–383. [Google Scholar] [CrossRef]
Data HR | Type of RWB | Period RWB, Center | Data HR | Type of RWB | Period RWB, Center |
---|---|---|---|---|---|
90% (6 events) | 96% (10 events) | ||||
27.07.2011 | CWB_on | 26–28.07, 124° E–61° N | 20.07.1987 | CWB_on | 19–21.07, 130° E–55° N |
29.07.2005 | WB | - | 03-04.07.2009 | AWB_I | 4–5.07, 128° E–56° N |
31.07.2018 | WB | - | 06.07.1985 | WB | – |
19.07.2012 | AWB_I | 20–21.07, 134° E–47° N | 13.07.1986 | CWB_on | 12–13.07, 95° E–65° N |
AWB_on | 16–23.07, 90° E–66° N | 20–21.07.1994 | CWB_I | 18–21.07, 107° E–64° N | |
06.07.2002 | AWB_I | 4–8.07, 120° E–65° N | 28.07.1987 | CWB_I | 28–30.07, 115° E–55° N |
04.07.2012 | CWB_on | 4–5.07, 103° E–57° N | 28–30.07.1982 | AWB_I | 28–31.07, 134° E–52° N |
91% (6 events) | 21.07.1995 | CWB_on | 20–22.07, 102° E–73° N | ||
24.07.1990 | WB | - | 27.07.2000 | CWB_on | 27–28.07, 130° E–61° N |
20.07.2004 | AWB_I | 20–22.07, 128° E–55° N | 28.07.1993 | AWB_I | 27–30.07, 120° E–60° N |
23.07.1992 | CWB_on | 18–24.08; 124° E–60° N | 97% (12 events) | ||
08.07.1996 | WB | - | 19.07.2000 | CWB_I | 19–21.07, 130° E–61° N |
02.07.2008 | WB | - | 08.07.1986 | CWB_on | 5–8.07, 95° E–65° N |
16.07.2009 | CWB_on | 16–17.07, 101° E–55° N | 22.07.2019 | CWB_on | 22–23.07, 113° E–56° N |
AWB_on | 15–17.07, 80° E–68° N | 30.07.2003 | CWB_on | 15–31.07, 117° E, 60° N | |
92% (8 events) | 18.07.1983 | CWB_on | 20–21.07, 126° E–53° N | ||
31.07.2013 | CWB_on | 31.07–1.08, 120° E–55° N | 28.07.1996 | CWB_I | 29.07, 120E–52° N |
11–13.07.2002 | CWB_I | 11–13.07, 135° E–52° N | AWB_on | 26–28.07, 81° E–63° N | |
27–28.07.1997 | WB | - | 25–26.07.1988 | CWB_on | 26–18.07, 114° E–61° N |
31.07.2007 | CWB_on | 30–31.07, 91° E–62° N | 21–23.07.1993 | CWB_on | 20–24.07, 86° E–60° N |
30.07.2012 | WB | - | 12.07.2015 | CWB_on | 11–13.07, 101° E–64° N |
17.07.1989 | CWB_I | 17–18.07, 124° E–54° N | 05–06.07.1991 | CWB_on | 5–7.07, 94° E–62° N |
AWB_on | 14–16.07, 114° E–61° N | 26–27.07.1991 | AWB_on | 26–28.07, 105° E–61° N | |
05.07.1989 | CWB_on | 6–8.07, 121° E–64° N | CWB_out | 26.07, 110° E–52° N | |
AWB_on | 1–8.07, 114° E–61° N | 25–26.07.1998 | CWB_on | 24–26.07, 119° E–56° N | |
12.07.1982 | AWB_on | 11–13.07, 91° E–69° N | 98% (9 events) | ||
CWB_out | 12–15.07, 147° E–58° N | 06–08.07.2006 | CWB_on | 6–9.07, 96° E, 64° N | |
93% (4 events) | 09.07.2016 | AWB_I | 9–10.07, 124° E–47° N | ||
12.07.1983 | AWB_on | 12.07, 108° E–71° N | 14–18.07.1998 | CWB_on | 14–17.07, 119° E–56° N |
CWB_out | 13–17.07, 126° E–53° N | 14.07.2010 | CWB_on | 13–14.07, 93° E–65° N | |
01.07.2018 | WB | - | 19.07.1984 | CWB_on | 17–22.07, 105° E–65° N |
23.07.1983 | WB | - | 08–09.07.1994 | CWB_on | 7–10.07, 107° E–64° N |
29.07.1990 | CWB_on | 28–29.07, 115° E–52° N | 15–16.07.1990 | CWB_on | 12–15.07, 118° E–54° N |
94% (8 events) | 06.07.2014 | CWB_I | 6–8.07, 124° E-57° N | ||
20–21.07.2003 | CWB_on | 15–31.07, 117° E, 60° N | 17–20.07.1997 | CWB_on | 16–18.07, 124° E–65° N |
09–10.07.2008 | CWB_on | 9–13.07, 127° E–70° N | 99% (12 events) | ||
16.07.2012 | AWB_on | 16–22.07, 90° E–55° N | 22.07.1985 | CWB_on | 20–23.07, 107° E–55° N |
AWB_I | 16.07, 134° E–46° N | 29.07.1984 | CWB_on | 28–30.07, 105° E–65° N | |
10–11.07.2018 | CWB_I | 10–14.07, 145° E–65° N | 21–22.07.2016 | CWB_I | 22–25.07, 140° E–60° N |
26–28.07.1999 | AWB_on | 26–28.07, 85° E–70° N | AWB_on | 20–21.07, 83° E–70° N | |
CWB_I | 28–29.07, 115° E–55° N | 27–28.07.2019 | CWB_on | 26–29.07, 113° E–56° N | |
22.07.2006 | AWB_on | 19–22.07, 89° E–68° N | 2.07.1997 | CWB_on | 1–3.07, 124° E–65° N |
CWB_on | 21–22.07, 105° N–52° N | 1.07.1999 | CWB_on | 3.06–2.07, 115° E–63° N | |
17.07.2018 | WB | 6–7.07.2001 | CWB_on | 6–10.07, 114° E–60° N | |
12.07.1990 | CWB_on | 12–15.07, 118° E–54° N | 27–28.07.1983 | CWB_on | 27–29.07, 115° E–55° N |
AWB_on | 7–11.07, 72° E–68° N | 15–17.07.1991 | CWB_on | 15–17.07, 96° E–62° N | |
95% (8 events) | 6–7.07.2000 | CWB_on | 6–8.07, 110° E–60° N | ||
14–15.07.1993 | CWB_on | 14–16.07, 127° E–50° N | AWB_on | 4–5.07, 85° E–59° N | |
09.07.1995 | AWB_I | 9–11.07, 135° E–54° N | 26.07.2008 | AWB_I | 26–27.07, 135° E–50° N |
22.07.1986 | CWB_I | 20–22.07, 95° E–65° N | 20.07.2018 | AWB_I | 20–23.07, 150° E–48° N |
04.07.1994 | CWB_on | 2–5.07, 107° E–64° N | |||
26.07.2003 | CWB_on | 15–31.07, 117° E–60° N | |||
05–06.07.2011 | CWB_on | 5–6.07, 124° E–61° N | |||
13.07.2007 | AWB_I | 15–18.07, 163° E–57° N | |||
AWB_on | 11–14.07, 83° E–63° N | ||||
22.07.1990 | WB | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antokhina, O.; Antokhin, P.; Alexander, G. Impact of Rossby Waves Breaking on the Heavy Rainfall in the Selenga River Basin in July. Environ. Sci. Proc. 2021, 4, 29. https://doi.org/10.3390/ecas2020-08120
Antokhina O, Antokhin P, Alexander G. Impact of Rossby Waves Breaking on the Heavy Rainfall in the Selenga River Basin in July. Environmental Sciences Proceedings. 2021; 4(1):29. https://doi.org/10.3390/ecas2020-08120
Chicago/Turabian StyleAntokhina, Olga, Pavel Antokhin, and Gochakov Alexander. 2021. "Impact of Rossby Waves Breaking on the Heavy Rainfall in the Selenga River Basin in July" Environmental Sciences Proceedings 4, no. 1: 29. https://doi.org/10.3390/ecas2020-08120
APA StyleAntokhina, O., Antokhin, P., & Alexander, G. (2021). Impact of Rossby Waves Breaking on the Heavy Rainfall in the Selenga River Basin in July. Environmental Sciences Proceedings, 4(1), 29. https://doi.org/10.3390/ecas2020-08120