Ultrasonic Irradiation as an Energy Source to Catalyze the Formation of a New Bioactive Sulfonylphthalimide †
Abstract
1. Introduction
2. Materials and Methods
2.1. General Procedure for the Synthesis of N-Sulfonylphthalimides
2.2. Spectral Data
3. Results and Discussion
Synthesis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amaniampong, P.N.; Jérôme, F. Catalysis under ultrasonic irradiation: A sound synergy. Curr. Opin. Green Sutain. Chem. 2020, 22, 7–12. [Google Scholar] [CrossRef]
- Grib, I.; Berredjem, M.; Otmane Rachedi, K.; Djouad, S.E.; Bouacida, S.; Bahadi, R.; Ouk, T.S.; Kadri, M.; Ben Hadda, T.; Belhani, B. Novel N-sulfonylphthalimides: Efficient synthesis, X-ray characterization, spectral investigations, POM analyses, DFT computations and antibacterial activity. J. Mol. Struct. 2020, 1217, 128423. [Google Scholar] [CrossRef]
- Bahadi, R.; Boughoula, R.; Berredjem, M.; Bachari, K.; Bouzina, A.; Bouacida, S.; Sbartai, H.; Benalliouche, F.; Redjemia, R. A convenient synthesis, biological activity and Xray crystallography of novel α-aminophosphonate derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2022, 197, 1150–1156. [Google Scholar] [CrossRef]
- Bouchareb, F.; Berredjem, M.; Bouzina, A.; Guerfi, M. Ultrasound-Promoted, Rapid and Green Synthesis of Phosphonamide Derivatives under Catalyst and Solvent-Free Conditions. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 422–430. [Google Scholar] [CrossRef]
- Belhani, B.; Berredjem, M.; Le Borgne, M.; Bouaziz, Z.; Lebreton, J.; Aouf, N.E. A One-Pot, Three-Component, Synthesis of Novel α-Sulfamidophosphonates under Ultrasound Irradiation and Catalyst-Free Conditions. RSC Adv. 2015, 5, 39324–39329. [Google Scholar] [CrossRef]
- Rajagopal, R.; Jarikote, D.V.; Srinivasan, K.V. Ultrasound promoted Suzuki cross-coupling reactions in ionic liquid at ambient conditions. Chem. Commun. 2002, 6, 616–617. [Google Scholar] [CrossRef] [PubMed]
- Giancarlo, C.; Pedro, C. Power ultrasound in organic synthesis: Moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev. 2006, 35, 180–196. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grib, I.; Berredjem, M.; Rizi, A. Ultrasonic Irradiation as an Energy Source to Catalyze the Formation of a New Bioactive Sulfonylphthalimide. Eng. Proc. 2024, 67, 90. https://doi.org/10.3390/engproc2024067090
Grib I, Berredjem M, Rizi A. Ultrasonic Irradiation as an Energy Source to Catalyze the Formation of a New Bioactive Sulfonylphthalimide. Engineering Proceedings. 2024; 67(1):90. https://doi.org/10.3390/engproc2024067090
Chicago/Turabian StyleGrib, Ismahene, Malika Berredjem, and Aicha Rizi. 2024. "Ultrasonic Irradiation as an Energy Source to Catalyze the Formation of a New Bioactive Sulfonylphthalimide" Engineering Proceedings 67, no. 1: 90. https://doi.org/10.3390/engproc2024067090
APA StyleGrib, I., Berredjem, M., & Rizi, A. (2024). Ultrasonic Irradiation as an Energy Source to Catalyze the Formation of a New Bioactive Sulfonylphthalimide. Engineering Proceedings, 67(1), 90. https://doi.org/10.3390/engproc2024067090