You are currently viewing a new version of our website. To view the old version click .
Engineering Proceedings
  • Abstract
  • Open Access

16 April 2021

Electro-Optical Full-Color Display Based on Nano-Particle Dispersions †

,
,
and
1
Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
2
South China Academy of Advanced Optoelectronics, Electronic Paper Display Institute, Guangzhou 510006, China
*
Authors to whom correspondence should be addressed.
Presented at the 1st International Conference on Micromachines and Applications, 15–30 April 2021; Available online: https://micromachines2021.sciforum.net/.
This article belongs to the Proceedings The 1st International Conference on Micromachines and Applications

Abstract

Electrokinetic displays are among the most important display technologies because of their low power consumption, wide viewing angle, and outdoor readability. As a result, they are regarded as excellent candidates for electronic paper. These types of displays are based on the controlled movement of charged pigment particles in a non-polar liquid under the influence of an electric field. Free charges practically do not exist in nonpolar colloids due to their low dielectric constant. However, the addition of a surfactant to non-polar colloids often leads to considerable charge-induced effects, such as increased electrical conductivity and particle stabilization. In this project, we aim to develop a novel electrokinetically driven display. An unprecedented display device is proposed, based on the concerted action of electro-osmosis and electrophoresis in a non-polar fluid. This method could reduce the switching time required to display information, and extend the applications of electrokinetic displays, enabling increased video speed and full color in the future.

Supplementary Materials

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.