Mechanism of Diabetes Remission or Improvement in Glucose Control Following Roux-en-Y Gastric Bypass Versus Sleeve Gastrectomy: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources and Searches
2.4. Data Collection Process
2.5. Analysis of Results
2.6. Intra-Study Risk of Bias (RoB) Assessment
2.7. Inter-Study Risk of Bias Assessment and Sensitivity Analysis
3. Results
Study Selection
4. Clinical Variables
4.1. BMI
4.2. Weight
4.3. Fat Mass
4.4. Fasting Glucose
4.5. HBA1C
4.6. Insulin
5. Mechanistic Variables
5.1. FGF19
5.2. GLP1
5.3. HOMA-B
5.4. Adiponectin/Leptin/GIP/Ghrelin/Matsuda Index/Pyy
5.5. Absolute Risk Reduction and Absolute Relapse Reduction (T2D)
6. Synthesis of Results
6.1. Risk of Bias Across Studies
6.2. Sensitivity
6.3. Risk of Intra-Study Study
7. Discussion
7.1. Study Limitations
7.2. Study Implications
7.3. Areas for Further Research and Recommendations
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
List of Abbreviations
ARR | Absolute risk reduction |
BMI | Body mass index |
CI | Confidence intervals |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
FGF-19 | Fibroblast growth factor 19 |
GIP | Gastric Inhibitory Polypeptide |
GLP-1 | Glucagon-like peptide-1 |
HbA1c | Glycated Haemoglobin |
HOMA-B | Homeostatic Model Assessment of Beta Cell Function |
MESH | Medical Subject Headings |
NOS | Newcastle Ottawa Scale |
NRT | Non-randomised trial |
PICOS | Population Intervention Comparator Outcome Study design(s) |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PYY | Hormone peptide YY |
RCT | Randomised controlled trial |
ROB2 | Risk of Bias 2 |
RYGB | Roux-en-Y Gastric Bypass |
SE | Standard Error |
SEM | Standard Error Mean |
SG | Sleeve gastrectomy |
SMD | Standard mean deviation |
SRMA | Systematic Review and Meta-analysis |
T2D | Type 2 diabetes |
VLCD | Very Low-Calorie Diet |
WHO | World Health Organization |
References
- Obesity and overweight. Available online: https://www.who/int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 14 March 2022).
- Thomas, D.M.; Bouchard, C.; Church, T.; Slentz, C.; Kraus, W.E.; Redman, L.M.; Martin, C.K.; Silva, A.M.; Vossen, M.; Westerterp, K.; et al. Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis. Obes. Rev. 2012, 13, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.S.; Loos, R.J.F.; McCaffery, J.M.; Ling, C.; Franks, P.W.; Weinstock, G.M.; Snyder, M.P.; Vassy, J.L.; Agurs-Collins, T. The Conference Working Group NIH working group report—Using genomic information to guide weight management: From universal to precision treatment. Obesity 2016, 24, 14–22. [Google Scholar] [CrossRef]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care 2016, 40, S11–S24. [Google Scholar] [CrossRef]
- Akkus, G.; Tetiker, T. Which predictors could effect on remission of type 2 diabetes mellitus after the metabolic surgery: A general perspective of current studies? Conflict-of-interest statement: PRISMA 2009 Checklist statement. World J. Diabetes 2021, 12, 1312–1324. [Google Scholar] [CrossRef]
- Isbell, J.M.; Tamboli, R.A.; Hansen, E.N.; Saliba, J.; Dunn, J.P.; Phillips, S.E.; Marks-Shulman, P.A.; Abumrad, N.N. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-En-Y gastric bypass surgery. Diabetes Care 2010, 33, 1438–1442. [Google Scholar] [CrossRef]
- E Cummings, D. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int. J. Obes. 2009, 33, S33–S40. [Google Scholar] [CrossRef]
- Abbott, S.; Price, C.; Coulman, K.; Ahmad, H.; Hossain, M.T.; Hossain MNAbbott, S.; Price, C.; Coulman, K.; Ahmad, H.; Hossain, M.T.; et al. P1-Efficacy of Pre-Operative “Liver Shrinking” Dietary Regimens: A UK National Cohort Study P2-Using the Ensuring Quality Information for Patients Tool to Assess Patient Information on Sleeve. Available online: https://bomss.org/wp-content/uploads/2021/08/Abstract_Book-V4.pdf (accessed on 14 March 2022).
- Colles, S.L.; Dixon, J.B.; Marks, P.; Strauss, B.J.; E O’brien, P. Preoperative weight loss with a very-low-energy diet: Quantitation of changes in liver and abdominal fat by serial imaging. Am. J. Clin. Nutr. 2006, 84, 304–311. [Google Scholar] [CrossRef]
- Romeijn, M.M.; Kolen, A.M.; Holthuijsen, D.D.B.; Janssen, L.; Schep, G.; Leclercq, W.K.G.; van Dielen, F.M.H. Effectiveness of a Low-Calorie Diet for Liver Volume Reduction Prior to Bariatric Surgery: A Systematic Review. Obes. Surg. 2020, 31, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Biro, S.M.; Olson, D.L.; Garren, M.J.; Gould, J.C. Diabetes remission and glycemic response to pre-bariatric surgery diet. J. Surg. Res. 2013, 185, 1–5. [Google Scholar] [CrossRef]
- Jackness, C.; Karmally, W.; Febres, G.; Conwell, I.M.; Ahmed, L.; Bessler, M.; McMahon, D.J.; Korner, J. Very low–calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients. Diabetes 2013, 62, 3027–3032. [Google Scholar] [CrossRef]
- Ferrannini, E.; Mingrone, G. Impact of different bariatric surgical procedures on insulin action and β-cell function in type 2 diabetes. Diabetes Care 2009, 32, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Balasubaramaniam, V.; Pouwels, S. Remission of Type 2 Diabetes Mellitus (T2DM) after Sleeve Gastrectomy (SG), One-Anastomosis Gastric Bypass (OAGB), and Roux-en-Y Gastric Bypass (RYGB): A Systematic Review. Medicina 2023, 59, 985. [Google Scholar] [CrossRef]
- Nannipieri, M.; Baldi, S.; Mari, A.; Colligiani, D.; Guarino, D.; Camastra, S.; Barsotti, E.; Berta, R.; Moriconi, D.; Bellini, R.; et al. Roux-en-Y gastric bypass and sleeve gastrectomy: Mechanisms of diabetes remission and role of gut hormones. J. Clin. Endocrinol. Metab. 2013, 98, 4391–4399. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.R.; Jirapinyo, P.; Thompson, C.C. Effect of Sleeve Gastrectomy on Ghrelin, GLP-1, PYY, and GIP Gut Hormones. Ann. Surg. 2019, 272, 72–80. [Google Scholar] [CrossRef]
- Tschöp, M.; Smiley, D.L.; Heiman, M.L. Ghrelin induces adiposity in rodents. Nature 2000, 407, 908–913. [Google Scholar] [CrossRef]
- Haluzík, M. Bariatric Surgery and the Mechanism of Diabetes Remission: Are We Getting There? J. Clin. Endocrinol. Metab. 2013, 98, 4336–4338. [Google Scholar] [CrossRef]
- Gerhard, G.S.; Styer, A.M.; Wood, G.C.; Roesch, S.L.; Petrick, A.T.; Gabrielsen, J.; Strodel, W.E.; Still, C.D.; Argyropoulos, G. A Role for Fibroblast Growth Factor 19 and Bile Acids in Diabetes Remission After Roux-en-Y Gastric Bypass. Diabetes Care 2013, 36, 1859–1864. [Google Scholar] [CrossRef]
- Saaiq, M.; Ashraf, B. Modifying “Pico” Question into “Picos” Model for More Robust and Reproducible Presentation of the Methodology Employed in A Scientific Study. World J. Plast. Surg. 2017, 6, 390–392. [Google Scholar] [PubMed] [PubMed Central]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Jørgensen, N.B.; Jacobsen, S.H.; Dirksen, C.; Bojsen-Møller, K.N.; Naver, L.; Hvolris, L.; Clausen, T.R.; Wulff, B.S.; Worm, D.; Hansen, D.L.; et al. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with Type 2 diabetes and normal glucose tolerance. Am. J. Physiol. Metab. 2012, 303, E122–E131. [Google Scholar] [CrossRef]
- Kashyap, S.R.; Daud, S.; Kelly, K.R.; Gastaldelli, A.; Win, H.; Brethauer, S.; Kirwan, J.P.; Schauer, P.R. Acute effects of gastric bypass versus gastric restrictive surgery on β-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int. J. Obes. 2009, 34, 462–471. [Google Scholar] [CrossRef]
- Malin, S.K.; Bena, J.; Abood, B.; Pothier, C.E.; Bhatt, D.L.; Nissen, S.; Brethauer, S.A.; Schauer, P.R.; Kirwan, J.P.; Kashyap, S.R. Attenuated improvements in adiponectin and fat loss characterize type 2 diabetes non-remission status after surgery. Diabetes Obes. Metab. 2015, 16, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Katsogiannos, P.; Kamble, P.G.; Pereira, M.J.; Sundbom, M.; Carlsson, P.; Eriksson, J.W.; Espes, D. Changes in Circulating Cytokines and Adipokines After RYGB in Patients with and without Type 2 Diabetes. Obesity 2021, 29, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.; Nicolau, J.; Flores, L.; Casamitjana, R.; Ibarzabal, A.; Lacy, A.; Vidal, J. Comparable early changes in gastrointestinal hormones after sleeve gastrectomy and Roux-En-Y gastric bypass surgery for morbidly obese type 2 diabetic subjects. Surg. Endosc. 2012, 26, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- Nosso, G.; Griffo, E.; Cotugno, M.; Saldalamacchia, G.; Lupoli, R.; Pacini, G.; Riccardi, G.; Angrisani, L.; Capaldo, B. Comparative Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Glucose Homeostasis and Incretin Hormones in Obese Type 2 Diabetic Patients: A One-Year Prospective Study. Horm. Metab. Res. 2016, 48, 312–317. [Google Scholar] [CrossRef]
- Laferrère, B.; Reilly, D.; Arias, S.; Swerdlow, N.; Gorroochurn, P.; Bawa, B.; Bose, M.; Teixeira, J.; Stevens, R.D.; Wenner, B.R.; et al. Differential Metabolic Impact of Gastric Bypass Surgery Versus Dietary Intervention in Obese Diabetic Subjects Despite Identical Weight Loss. Sci. Transl. Med. 2011, 3, 80re2. [Google Scholar] [CrossRef]
- Bojsen-Møller, K.N.; Dirksen, C.; Jørgensen, N.B.; Jacobsen, S.H.; Serup, A.K.; Albers, P.H.; Hansen, D.L.; Worm, D.; Naver, L.; Kristiansen, V.B.; et al. Early Enhancements of Hepatic and Later of Peripheral Insulin Sensitivity Combined With Increased Postprandial Insulin Secretion Contribute to Improved Glycemic Control After Roux-en-Y Gastric Bypass. Diabetes 2014, 63, 1725–1737. [Google Scholar] [CrossRef] [PubMed]
- Laferrère, B.; Teixeira, J.; McGinty, J.; Tran, H.; Egger, J.R.; Colarusso, A.; Kovack, B.; Bawa, B.; Koshy, N.; Lee, H.; et al. Effect of Weight Loss by Gastric Bypass Surgery Versus Hypocaloric Diet on Glucose and Incretin Levels in Patients with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 2479–2485. [Google Scholar] [CrossRef]
- Khoo, C.M.; Chen, J.; Pamuklar, Z.; Torquati, A.M. Effects of Roux-en-Y Gastric Bypass or Diabetes Support and Education on Insulin Sensitivity and Insulin Secretion in Morbidly Obese Patients With Type 2 Diabetes. Ann. Surg. 2014, 259, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, S.; Wang, Q.; Billington, C.; Connett, J.; Ahmed, L.; Inabnet, W.; Chua, S.; Ikramuddin, S.; Korner, J. FGF 19 and Bile Acids Increase Following Roux-en-Y Gastric Bypass but Not After Medical Management in Patients with Type 2 Diabetes. Obes. Surg. 2015, 26, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Wallenius, V.; Dirinck, E.; Fändriks, L.; Maleckas, A.; le Roux, C.W.; Thorell, A. Glycemic Control after Sleeve Gastrectomy and Roux-En-Y Gastric Bypass in Obese Subjects with Type 2 Diabetes Mellitus. Obes. Surg. 2017, 28, 1461–1472. [Google Scholar] [CrossRef]
- Martinussen, C.; Bojsen-Møller, K.N.; Dirksen, C.; Jacobsen, S.H.; Jørgensen, N.B.; Kristiansen, V.B.; Holst, J.J.; Madsbad, S. Immediate enhancement of first-phase insulin secretion and unchanged glucose effectiveness in patients with type 2 diabetes after Roux-en-Y gastric bypass. Am. J. Physiol. Metab. 2015, 308, E535–E544. [Google Scholar] [CrossRef]
- Kratz, M.; Hagman, D.K.; Kuzma, J.N.; Foster-Schubert, K.E.; Chan, C.P.; Stewart, S.; van Yserloo, B.; Westbrook, E.O.; Arterburn, D.E.; Flum, D.R.; et al. Improvements in glycemic control after gastric bypass occur despite persistent adipose tissue inflammation. Obesity 2016, 24, 1438–1445. [Google Scholar] [CrossRef]
- Nemati, R.; Lu, J.; Dokpuang, D.; Booth, M.; Plank, L.D.; Murphy, R. Increased Bile Acids and FGF19 After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass Correlate with Improvement in Type 2 Diabetes in a Randomized Trial. Obes. Surg. 2018, 28, 2672–2686. [Google Scholar] [CrossRef]
- Johansson, L.; Roos, M.; Kullberg, J.; Weis, J.; Ahlström, H.; Sundbom, M.; Engström, B.E.; Karlsson, F.A. Lipid mobilization following Roux-en-Y gastric bypass examined by magnetic resonance imaging and spectroscopy. Obes. Surg. 2008, 18, 1297–1304. [Google Scholar] [CrossRef]
- Hofsø, D.; Nordstrand, N.; Johnson, L.K.; I Karlsen, T.; Hager, H.; Jenssen, T.; Bollerslev, J.; Godang, K.; Sandbu, R.; Røislien, J.; et al. Obesity-related cardiovascular risk factors after weight loss: A clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur. J. Endocrinol. 2010, 163, 735–745. [Google Scholar] [CrossRef]
- Khoo, C.M.M.; Muehlbauer, M.J.; Stevens, R.D.; Pamuklar, Z.; Chen, J.; Newgard, C.B.; Torquati, A.M. Postprandial Metabolite Profiles Reveal Differential Nutrient Handling After Bariatric Surgery Compared With Matched Caloric Restriction. Ann. Surg. 2014, 259, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.T.; Billington, C.J.; Vella, A.; Wang, Q.; Ahmed, L.; Bantle, J.P.; Bessler, M.; Connett, J.E.; Inabnet, W.B.; Thomas, A.; et al. Preserved Insulin Secretory Capacity and Weight Loss Are the Predominant Predictors of Glycemic Control in Patients With Type 2 Diabetes Randomized to Roux-en-Y Gastric Bypass. Diabetes 2015, 64, 3104–3110. [Google Scholar] [CrossRef]
- Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Brethauer, S.A.; Navaneethan, S.D.; Aminian, A.; Pothier, C.E.; Kim, E.S.H.; Nissen, S.E. Bariatric Surgery versus Intensive Medical Therapy for Diabetes—3-Year Outcomes. N. Engl. J. Med. 2014, 370, 2002–2013. [Google Scholar] [CrossRef]
- Ikramuddin, S.; Korner, J.; Lee, W.J.; Connett, J.E.; Inabnet, W.B.; Billington, C.J.; Thomas, A.J.; Leslie, D.B.; Chong, K.; Jeffery, R.W. Roux-en-Y Gastric Bypass versus Intensive Medical Management for the Control of Type 2 Diabetes, Hypertension and Hyperlipidemia: An International, Multicenter, Randomized Trial. JAMA J. Am. Med. Assoc. 2013, 309, 2240–2249. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.S.; Chapman, W.H.; Pender, J.R.; Drake, A.J.; O’Brien, K.; Tanenberg, R.J.; Dohm, G.L.; Pories, W.J. GLP-1 Response to a Mixed Meal: What Happens 10 Years after Roux-en-Y Gastric Bypass (RYGB)? Obes. Surg. 2012, 22, 1077–1083. [Google Scholar] [CrossRef]
- Laferrère, B.; Heshka, S.; Wang, K.; Khan, Y.; McGinty, J.; Teixeira, J.; Hart, A.B.; Olivan, B. Incretin Levels and Effect Are Markedly Enhanced 1 Month After Roux-en-Y Gastric Bypass Surgery in Obese Patients With Type 2 Diabetes. Diabetes Care 2007, 30, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Lips, M.A.; de Groot, G.H.; van Klinken, J.B.; Aarts, E.; Berends, F.J.; Janssen, I.M.; Van Ramshorst, B.; Van Wagensveld, B.A.; Swank, D.J.; Van Dielen, F.; et al. Calorie Restriction is a Major Determinant of the Short-Term Metabolic Effects of Gastric Bypass Surgery in Obese Type 2 Diabetic Patients. Clin. Endocrinol. 2013, 80, 834–842. [Google Scholar] [CrossRef]
- Vetter, M.L.; Wadden, T.A.; Teff, K.L.; Khan, Z.F.; Carvajal, R.; Ritter, S.; Moore, R.H.; Chittams, J.L.; Iagnocco, A.; Murayama, K.; et al. GLP-1 Plays a Limited Role in Improved Glycemia Shortly After Roux-en-Y Gastric Bypass: A Comparison With Intensive Lifestyle Modification. Diabetes 2014, 64, 434–446. [Google Scholar] [CrossRef]
- Holter, M.M.; Dutia, R.; Stano, S.M.; Prigeon, R.L.; Homel, P.; McGinty, J.J.; Belsley, S.J.; Ren, C.J.; Rosen, D.; Laferrère, B. Glucose Metabolism After Gastric Banding and Gastric Bypass in Individuals With Type 2 Diabetes: Weight Loss Effect. Diabetes Care 2016, 40, 7–15. [Google Scholar] [CrossRef]
- Purnell, J.Q.; Selzer, F.; Wahed, A.S.; Pender, J.; Pories, W.; Pomp, A.; Dakin, G.; Mitchell, J.; Garcia, L.; Staten, M.A.; et al. Type 2 Diabetes Remission Rates After Laparoscopic Gastric Bypass and Gastric Banding: Results of the Longitudinal Assessment of Bariatric Surgery Study. Diabetes Care 2016, 39, 1101–1107. [Google Scholar] [CrossRef]
- Camastra, S.; Muscelli, E.; Gastaldelli, A.; Holst, J.J.; Astiarraga, B.; Baldi, S.; Nannipieri, M.; Ciociaro, D.; Anselmino, M.; Mari, A.; et al. Long-Term Effects of Bariatric Surgery on Meal Disposal and β-Cell Function in Diabetic and Nondiabetic Patients. Diabetes 2013, 62, 3709–3717. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.; Tsai, P.; Jüllig, M.; Liu, A.; Plank, L.; Booth, M. Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obes. Surg. 2016, 27, 917–925. [Google Scholar] [CrossRef]
- Camastra, S.; Gastaldelli, A.; Mari, A.; Bonuccelli, S.; Scartabelli, G.; Frascerra, S.; Baldi, S.; Nannipieri, M.; Rebelos, E.; Anselmino, M.; et al. Early and longer term effects of gastric bypass surgery on tissue-specific insulin sensitivity and beta cell function in morbidly obese patients with and without type 2 diabetes. Diabetologia 2011, 54, 2093–2102. [Google Scholar] [CrossRef]
- Nannipieri, M.M.A. The Role of β-Cell Function and Insulin Sensitivity in the Remission of Type 2 Diabetes after Gastric Bypass Surgery. J. Clin. Endocrinol. Metab. 2011, 96, E1372–E1379. [Google Scholar] [CrossRef]
- Umeda, L.M.; Silva, E.A.; Carneiro, G.; Arasaki, C.H.; Geloneze, B.; Zanella, M.T. Early Improvement in Glycemic Control After Bariatric Surgery and Its Relationships with Insulin, GLP-1, and Glucagon Secretion in Type 2 Diabetic Patients. Obes. Surg. 2011, 21, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, M.; Abbatini, F.; Casella, G.; Alessandri, G.; Fantini, A.; Leonetti, F.; Basso, N. Early Postoperative Insulin-Resistance Changes After Sleeve Gastrectomy. Obes. Surg. 2009, 20, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Basso, N.; Capoccia, D.; Rizzello, M.; Abbatini, F.; Mariani, P.; Maglio, C.; Coccia, F.; Borgonuovo, G.; De Luca, M.L.; Asprino, R.; et al. First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: The gastric hypothesis. Surg. Endosc. 2011, 25, 3540–3550. [Google Scholar] [CrossRef]
- Casajoana, A.; Pujol, J.; Garcia, A.; Elvira, J.; Virgili, N.; de Oca, F.J.; Duran, X.; Fernández-Veledo, S.; Vendrell, J.; Vilarrasa, N. Predictive Value of Gut Peptides in T2D Remission: Randomized Controlled Trial Comparing Metabolic Gastric Bypass, Sleeve Gastrectomy and Greater Curvature Plication. Obes. Surg. 2017, 27, 2235–2245. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, J.; Nemati, R.; Plank, L.D.; Murphy, R. Acute Changes of Bile Acids and FGF19 After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass. Obes. Surg. 2019, 29, 3605–3621. [Google Scholar] [CrossRef]
- Dutia, R.; Embrey, M.; O’Brien, S.; A Haeusler, R.; Agénor, K.K.; Homel, P.; McGinty, J.; Vincent, R.P.; Alaghband-Zadeh, J.; Staels, B.; et al. Temporal changes in bile acid levels and 12α-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes. Int. J. Obes. 2015, 39, 806–813. [Google Scholar] [CrossRef]
- Yoshino, M.; Kayser, B.D.; Yoshino, J.; Stein, R.I.; Reeds, D.; Eagon, J.C.; Eckhouse, S.R.; Watrous, J.D.; Jain, M.; Knight, R.; et al. Effects of Diet versus Gastric Bypass on Metabolic Function in Diabetes. N. Engl. J. Med. 2020, 383, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Van der Schueren, B.J.; Homel, P.; Alam, M.; Agenor, K.; Wang, G.; Reilly, D.; Laferrère, B. Magnitude and Variability of the Glucagon-Like Peptide-1 Response in Patients With Type 2 Diabetes up to 2 Years Following Gastric Bypass Surgery. Diabetes Care 2011, 35, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Pournaras, D.J.; Nygren, J.; Hagström-Toft, E.; Arner, P.; le Roux, C.W.; Thorell, A. Improved glucose metabolism after gastric bypass: Evolution of the paradigm. Surg. Obes. Relat. Dis. 2016, 12, 1457–1465. [Google Scholar] [CrossRef]
- Clements, R.H.; Gonzalez, Q.H.; Long, C.I.; Wittert, G.; Laws, H.L. Hormonal changes after Roux-en Y gastric bypass for morbid obesity and the control of type-II diabetes mellitus. Am. Surg. 2004, 70, 1–5. [Google Scholar] [CrossRef]
- Steven, S.; Hollingsworth, K.G.; Small, P.K.; Woodcock, S.A.; Pucci, A.; Aribasala, B.; Al-Mrabeh, A.; Batterham, R.L.; Taylor, R. Calorie restriction and not glucagon-like peptide-1 explains the acute improvement in glucose control after gastric bypass in Type 2 diabetes. Diabet. Med. 2016, 33, 1723–1731. [Google Scholar] [CrossRef]
- Hofsø, D.; Fatima, F.; Borgeraas, H.; Birkeland, K.I.; Gulseth, H.L.; Hertel, J.K.; Johnson, L.K.; Lindberg, M.; Nordstrand, N.; Småstuen, M.C.; et al. Gastric bypass versus sleeve gastrectomy in patients with type 2 diabetes (Oseberg): A single-centre, triple-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 912–924. [Google Scholar] [CrossRef]
- Tsoli, M.; Chronaiou, A.; Kehagias, I.; Kalfarentzos, F.; Alexandrides, T.K. Hormone changes and diabetes resolution after biliopancreatic diversion and laparoscopic sleeve gastrectomy: A comparative prospective study. Surg. Obes. Relat. Dis. 2013, 9, 667–677. [Google Scholar] [CrossRef]
- Lim, E.L.; Hollingsworth, K.G.; Aribisala, B.S.; Chen, M.J.; Mathers, J.C.; Taylor, R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011, 54, 2506–2514. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, N.B.; Dirksen, C.; Bojsen-Møller, K.N.; Jacobsen, S.H.; Worm, D.; Hansen, D.L.; Kristiansen, V.B.; Naver, L.; Madsbad, S.; Holst, J.J. Exaggerated Glucagon-Like Peptide 1 Response Is Important for Improved β-Cell Function and Glucose Tolerance After Roux-en-Y Gastric Bypass in Patients With Type 2 Diabetes. Diabetes 2013, 62, 3044–3052. [Google Scholar] [CrossRef]
- Wing, R.R.; Blair, E.H.; Bononi, P.; Marcus, M.D.; Watanabe, R.; Bergman, R.N. Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients. Diabetes Care 1994, 17, 30–36. [Google Scholar] [CrossRef]
- Henry, R.; Scheaffer, L.; Olefsky, J. Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1985, 61, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Lee, Y.-C.; Ser, K.-H.; Chen, J.-C.; Chen, S.C. Improvement of insulin resistance after obesity surgery: A comparison of gastric banding and bypass procedures. Obes. Surg. 2008, 18, 1119–1125. [Google Scholar] [CrossRef]
- Rubino, F.; Forgione, A.; Cummings, D.E.; Vix, M.; Gnuli, D.; Mingrone, G.; Castagneto, M.; Marescaux, J. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann. Surg. 2006, 244, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Strader, A.D.; Vahl, T.P.; Jandacek, R.J.; Woods, S.C.; D’alessio, D.A.; Seeley, R.J. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am. J. Physiol. Metab. 2005, 288, E447–E453. [Google Scholar] [CrossRef]
- Hanusch-Enserer, U.; Cauza, E.; Brabant, G.; Dunky, A.; Rosen, H.; Pacini, G.; Tüchler, H.; Prager, R.; Roden, M. Plasma ghrelin in obesity before and after weight loss after laparoscopical adjustable gastric banding. J. Clin. Endocrinol. Metab. 2004, 89, 3352–3358. [Google Scholar] [CrossRef]
- Morínigo, R.; Lacy, A.M.; Casamitjana, R.; Delgado, S.; Gomis, R.; Vidal, J. GLP-1 and changes in glucose tolerance following gastric bypass surgery in morbidly obese subjects. Obes. Surg. 2006, 16, 1594–1601. [Google Scholar] [CrossRef]
- Whitson, B.A.; Leslie, D.B.; Kellog, T.A.; Maddaus, M.A.; Buchwald, H.; Billington, C.J.; Ikramuddin, S. Entero-endocrine changes after gastric bypass in diabetic and nondiabetic patients: A preliminary study. J. Surg. Res. 2007, 141, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.T.; Mocanu, V.; Park, H.; Laffin, M.; Hotte, N.; Karmali, S.; Birch, D.; Madsen, K.L. Roux-en-Y gastric bypass and sleeve gastrectomy induce substantiual and persistent change sin microbial communities and metabolic pathways. Gut Microbes 2022, 14, 2050636. [Google Scholar] [CrossRef]
- Group, B.-S.C. Roux-en-Y Gastric Bypass, gastric banding, or sleeve gastrectomy for severe obesity: Baseline data from the By-Band-Sleeve Randomized Controlled trial. Obesity 2023, 31, 1290–1299. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilmington, R.; Ardavani, A.; Hasan, N.; Alhindi, Y.; Ramzan, I.; Anyiam, O.; Idris, I. Mechanism of Diabetes Remission or Improvement in Glucose Control Following Roux-en-Y Gastric Bypass Versus Sleeve Gastrectomy: A Systematic Review and Meta-Analysis. Obesities 2025, 5, 14. https://doi.org/10.3390/obesities5010014
Wilmington R, Ardavani A, Hasan N, Alhindi Y, Ramzan I, Anyiam O, Idris I. Mechanism of Diabetes Remission or Improvement in Glucose Control Following Roux-en-Y Gastric Bypass Versus Sleeve Gastrectomy: A Systematic Review and Meta-Analysis. Obesities. 2025; 5(1):14. https://doi.org/10.3390/obesities5010014
Chicago/Turabian StyleWilmington, Rebekah, Arash Ardavani, Nebras Hasan, Yousef Alhindi, Imran Ramzan, Oluwaseun Anyiam, and Iskandar Idris. 2025. "Mechanism of Diabetes Remission or Improvement in Glucose Control Following Roux-en-Y Gastric Bypass Versus Sleeve Gastrectomy: A Systematic Review and Meta-Analysis" Obesities 5, no. 1: 14. https://doi.org/10.3390/obesities5010014
APA StyleWilmington, R., Ardavani, A., Hasan, N., Alhindi, Y., Ramzan, I., Anyiam, O., & Idris, I. (2025). Mechanism of Diabetes Remission or Improvement in Glucose Control Following Roux-en-Y Gastric Bypass Versus Sleeve Gastrectomy: A Systematic Review and Meta-Analysis. Obesities, 5(1), 14. https://doi.org/10.3390/obesities5010014