Characterization of Transparent Surfaces Through Double Fringe Projection, Implementing a Frequency Filtering Technique and Spatial Phase Demodulation
Abstract
1. Introduction
2. Experimental Design
3. System Setup and Theoretical Description
3.1. System Characteristics
3.2. Double Fringe Projection
3.3. Frequency Filtering for Moiré Pattern Retrieval
3.4. Phase Recovery from a Single Intensity Pattern
4. Experimental Results
5. Conclusions
- This study primarily aimed to characterize transparent surfaces using a non-invasive optical approach based on simultaneous double digital fringe projection (DDFP) and phase recovery through spatial demodulation.
- The key novelty of this work lies in the combined implementation of double fringe projection and frequency filtering, which overcomes the typical limitations encountered in the measurement of transparent objects.
- Experimental results demonstrated the acquisition of detailed height maps on highly transparent surfaces, maintaining good spatial resolution and low distortion.
- The system is flexible and not limited to a single algorithm. The Instantaneous Quadrature Transform (IQT) was used as a demonstrative example due to its robustness under noisy conditions, but other spatial or temporal algorithms can be used with similar effectiveness.
- The setup relies on standard equipment and open-source software, making it accessible and viable for academic and resource-constrained environments.
- Compared to previous approaches such as single fringe projection or interferometric methods, the double projection strategy achieved similar results in spatial resolution and phase recovery accuracy, while reducing system complexity by avoiding the need for nanometric precision and synchronization.
- The method effectively addresses challenges caused by refraction and reflection in transparent materials by integrating techniques that stabilize phase retrieval and reduce ambient noise.
- This approach shows strong potential for use in industries where transparent surface characterization is critical, such as optical lens manufacturing, thin film analysis, and glass component quality control, both in static and dynamic scenarios.
- Although the focus was on low-reflectivity transparent objects, the system can be adapted for optically complex or opaque surfaces, as well as curved geometries, with appropriate calibration and geometric adjustments.
- Future work should explore the method’s performance under variable lighting conditions and on non-uniform or complex surfaces, as well as develop more robust phase retrieval algorithms for real-time applications.
- In conclusion, this work offers an accessible and versatile tool for optical surface characterization. For non-specialist readers, it provides a practical and adaptable solution to common challenges in the measurement of transparent objects.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Qiao, Y.; Qiu, B. Reconstructing the surface of transparent objects by polarized light measurements. Opt. Express 2017, 25, 26296–26309. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sui, C.; Huang, T.; Zhang, Y.; Zhou, W.; Chen, X.; Liu, Y. 3D surface reconstruction of transparent objects using laser scanning with a four-layers refinement process. Opt. Express 2022, 30, 8571–8591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, F.; Lu, L.; Su, Z.; Pan, W.; Dai, X. Reconstruction of transparent objects using phase shifting profilometry based on diffusion models. Opt. Express 2024, 32, 13342–13356. [Google Scholar] [CrossRef] [PubMed]
- Múnera, N. Interferometría Holográfica Digital en Tiempo Real: Aplicación de la Cuantificación de Deformaciones Mecánicas. Master’s Thesis, Universidad Nacional de Colombia, Facultad de Ciencias, Medellín, Colombia, 2013. [Google Scholar]
- Cerca, M.; Barrientos, B.; García, J.; Hernández, C. Obtención del relieve digital mediante proyección de luz estructurada en modelos analógicos de extensión. Bol. Soc. Geol. Mex. 2007, 59, 101–113. [Google Scholar] [CrossRef]
- Zhang, Z. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques. Opt. Lasers Eng. 2012, 50, 1097–1106. [Google Scholar] [CrossRef]
- Quan, C.; Tay, C.; Huang, Y. 3-D deformation measurement using fringe projection and digital image correlation. Optik 2004, 115, 164–168. [Google Scholar] [CrossRef]
- Soriano-Garcia, M.; Sevilla-Escoboza, R.; Mora-Gonzalez, M. Optomechatronics design for mobile fringe patterns with applications on profilometry. In Proceedings of the IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 13–15 November 2019; pp. 1–6. [Google Scholar]
- Valin, J.; Goncalves, E.; Vinícius-Soares, P.; Milito, G.; Palacios-Fernández, F.; Roque, G.; Ricardo-Pérez, J.; Valin Fernández, M. Desarrollo del método de Moiré de proyección de franjas para la evaluación de deformaciones en premolares superiores. Ing. Mec. 2017, 20, 22–30. [Google Scholar]
- González, A.; Meneses, J.; León, J. Proyección de franjas en metrología óptica facial. INGE CUC 2012, 8, 191–206. [Google Scholar]
- Sciammarella, C.A.; Lamberti, L.; Boccaccio, A. General model for moiré contouring, part 1: Theory. Opt. Eng. 2008, 47, 033605. [Google Scholar] [CrossRef]
- Parra-Michel, J.; Martinez-Pelaez, R.; Duarte-Moller, A. Double structured light with divergent projection for surface topometry. Meas. Sci. Technol. 2021, 32, 095205. [Google Scholar] [CrossRef]
- Uribe-López, U.; Gutiérrez-Hernández, D.; Casillas Rodríguez, F.; Mora-González, M.; Muñoz-Maciel, J. Improvement of fringe quality for phase extraction in double digital fringe projection. Opt. Eng. 2019, 58, 092605. [Google Scholar] [CrossRef]
- Gutierrez-Hernandez, D.; Parra, J.; Atondo-Rubio, G.; Tellez-Quiñones, A.; Del Valle, J. Fast phase retrieval by temporal phase shifting and double-digital fringe projection. J. Optoelectron. Adv. Mater. 2016, 18, 750. [Google Scholar]
- Gutierrez-Hernandez, D.; Atondo-Rubio, G.; Parra, J.; Santiago-Montero, R.; Romero, V.; Del Valle, J.; Ibarra, I. Double-digital fringe projection for optical phase retrieval of a single frame. J. Optoelectron. Adv. Mater. 2015, 17, 1248–1253. [Google Scholar]
- Uribe-López, U.; Gutierrez-Hernandez, D.; Casillas-Rodriguez, F.; Tellez-Quiñones, A.; Parra-Michel, J.; Del Valle-Hernandez, J.; Escobar, M. Measurement of transient dynamics on a flexible membrane by double digital fringe projection. J. Optoelectron. Adv. Mater. 2019, 21, 1–2. [Google Scholar]
- Canchola, M. Medición de Perfiles Utilizando Técnicas de Proyección de Franjas. Master’s Thesis, INAOE, Puebla, México, 2012. [Google Scholar]
- Takeda, M.; Ina, H.; Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 1982, 72, 156–160. [Google Scholar] [CrossRef]
- Quiroga, J.; Servin, M.; Marroquín, J.; Gomez-Pedrero, J. Isotropic n-dimensional quadrature transform and its applications in fringe pattern processing. In Proceedings of the Optical Measurement Systems for Industrial Inspection III (SPIE 5144), Munich, Germany, 23–26 June 2003. [Google Scholar] [CrossRef]
- Creath, K.; Wyant, J. Optical Shop Testing; John Wiley & Sons: New York, NY, USA, 1992; pp. 501–599. [Google Scholar]
- Malacara, D. Phase Shifting Interferometry. Rev. Mex. Física 1990, 36, 6–22. [Google Scholar]
- Kreis, T. Fourier Transform Evaluation. Handbook of Holographic Interferometry: Optical and Digital Methods; John Wiley & Sons Ltd.: Bremen, Germany, 2005; pp. 256–258. [Google Scholar]
- Liu, Z.; Bu, S.; Zhang, C.; Tang, X. Filter Fourier Coefficients of Shape Projections for 3D Shape Retrieval. Int. J. Inf. 2010, 13, 1351–1360. [Google Scholar]
- Uribe-López, U.; Hernández-Montes, M.; Mendoza-Santoyo, F. Fully automated digital holographic interferometer for 360 deg contour and displacement measurements. Opt. Eng. 2016, 55, 121719. [Google Scholar] [CrossRef]
- Hernández, J.; De la Rosa, J.; Rodríguez, G.; Flores, J.; Tsonchev, R.; Garcia-Torales, G.; Alaniz-Lumbreras, D.; González, E. The 2D Continuous Wavelet Transform: Applications in Fringe Pattern Processing for Optical Measurement Techniques. In Wavelet Theory and Its Applications; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Larkin, K.; Bone, D.; Oldfield, M. Natural demodulation of two- dimensional fringe patterns. I. General background of the spiral phase quadrature transform. JOSA A 2001, 8, 1862–1870. [Google Scholar] [CrossRef]
- Quiroga, J.; Crespo, D.; Gomez-Pedrero, J. XtremeFringe: State-of-the-art software for automatic processing of fringe patterns. In Proceedings of the Optical Measurement Systems for Industrial Inspection V (SPIE 6616), Munich, Germany, 17–21 June 2007; p. 66163Y. [Google Scholar]
- Pritt, M. Weighted least squares phase unwrapping by means of multigrid techniques. In Proceedings of the Synthetic Aperture Radar and Passive Microwave Sensing (SPIE 2584), Paris, France, 25–28 September 1995; Volume 2584, pp. 278–288. [Google Scholar]
- Botello, S.; Marroquin, J.L.; Rivera, M. Multigrid algorithms for processing fringe-pattern images. Appl. Opt. 1998, 37, 7587–7595. [Google Scholar] [CrossRef]
- Rivera, M.; Hernandez-Lopez, F.; Gonzalez, A. Phase unwrapping by accumulation of residual maps. Opt. Lasers Eng. 2015, 64, 51–58. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uribe-López, U.; Gutiérrez-Hernández, D.A.; Zamudio-Rodríguez, V.; del Valle-Hernández, J.; Olivares-Vera, D.; Santiago-Montero, R.; Gómez-Díaz, M.; Velázquez-Vázquez, D.A. Characterization of Transparent Surfaces Through Double Fringe Projection, Implementing a Frequency Filtering Technique and Spatial Phase Demodulation. Eng 2025, 6, 244. https://doi.org/10.3390/eng6090244
Uribe-López U, Gutiérrez-Hernández DA, Zamudio-Rodríguez V, del Valle-Hernández J, Olivares-Vera D, Santiago-Montero R, Gómez-Díaz M, Velázquez-Vázquez DA. Characterization of Transparent Surfaces Through Double Fringe Projection, Implementing a Frequency Filtering Technique and Spatial Phase Demodulation. Eng. 2025; 6(9):244. https://doi.org/10.3390/eng6090244
Chicago/Turabian StyleUribe-López, Ubaldo, David Asael Gutiérrez-Hernández, Víctor Zamudio-Rodríguez, Josué del Valle-Hernández, Daniel Olivares-Vera, Raúl Santiago-Montero, Miguel Gómez-Díaz, and Dulce Aurora Velázquez-Vázquez. 2025. "Characterization of Transparent Surfaces Through Double Fringe Projection, Implementing a Frequency Filtering Technique and Spatial Phase Demodulation" Eng 6, no. 9: 244. https://doi.org/10.3390/eng6090244
APA StyleUribe-López, U., Gutiérrez-Hernández, D. A., Zamudio-Rodríguez, V., del Valle-Hernández, J., Olivares-Vera, D., Santiago-Montero, R., Gómez-Díaz, M., & Velázquez-Vázquez, D. A. (2025). Characterization of Transparent Surfaces Through Double Fringe Projection, Implementing a Frequency Filtering Technique and Spatial Phase Demodulation. Eng, 6(9), 244. https://doi.org/10.3390/eng6090244