Scrutinizing Competitiveness of Construction Companies Based on an Integrated Multi-Criteria Decision Making Model
Abstract
:1. Introduction
- Study and identify the affecting critical success factors (CSFs) on the construction company’s competitiveness;
- Determine and develop a competitiveness index for construction companies based on industry type and company size.
2. Literature Review
2.1. Competitiveness of Construction Companies
2.2. Previous Research Studies
2.3. Overview of Multi-Criteria Decision Making Algorithms
3. Methodology
4. Model Development
4.1. Factors Identification and Description
4.1.1. Internal Pillar
- ➢
- Humans and knowledge
- ➢
- Company resources
- ➢
- Bidding
- ➢
- Competitive strategy
- ➢
- Organizational structure
- ➢
- Marketing
- ➢
- Technology abilities
- ➢
- Adjusting one’s abilities
- ➢
- Human resources development
4.1.2. External Pillar
- ➢
- Clients
- ➢
- Industry conditions
- ➢
- Relationships
- ➢
- Economic factors
- ➢
- Legislation and political aspects
4.1.3. Financial Pillar
- ➢
- Ratio of profit margin
- ➢
- Activity ratio
- ➢
- Leverage ratio
- ➢
- Liquidity ratio
- ➢
- Growth ratio
4.2. Fuzzy Analytic Network Process
4.3. Basic Procedures of PROMETHEE II
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chinowsky, P.S. Strategic Management in Engineering Organizations. J. Manag. Eng. 2001, 17, 60–68. [Google Scholar] [CrossRef]
- Maroušek, J.; Maroušková, A. Crystallization Nuclei Obtained from Biowaste Enables the Production of Concrete in Accordance with the Principles of Circular Economy. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 5–8 July 2022; pp. 1–4. [Google Scholar]
- Kovacova, M.; Lăzăroiu, G. Sustainable organizational performance, cyber-physical production networks, and deep learning-assisted smart process planning in industry 4.0-based manufacturing systems. Econ. Manag. Financ. Mark. 2021, 16, 41–54. [Google Scholar]
- Vochozka, M.; Rowland, Z.; Suler, P.; Marousek, J. The Influence of the International Price of Oil on the Value of the EUR/USD Exchange Rate. J. Compet. 2020, 12, 167–190. [Google Scholar] [CrossRef]
- Maroušek, J.; Maroušková, A.; Kůs, T. Shower cooler reduces pollutants release in production of competitive cement substitute at low cost. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–10. [Google Scholar] [CrossRef]
- Abraham, G. Identification of Critical Success Factors for Construction Organization in the Architectural/Engineering/Construction Industry; Georgia Institute of Technology: Atlanta, GA, USA, 2000. [Google Scholar]
- Kliestik, T.; Zvarikova, K.; Lăzăroiu, G. Data-driven Machine Learning and Neural Network Algorithms in the Retailing Environment: Consumer Engagement, Experience, and Purchase Behaviors. Econ. Manag. Financ. Mark. 2022, 17, 57–69. [Google Scholar]
- Barney, J.B. Resource-based theories of competitive advantage: A ten-year retrospective on the resource-based view. J. Manag. 2001, 27, 643–650. [Google Scholar] [CrossRef]
- Bassioni, H.A.; Price, A.D.; Hassan, T.M. Building a conceptual framework for measuring business performance in construction: An empirical evaluation. Constr. Manag. Econ. 2005, 23, 495–507. [Google Scholar] [CrossRef]
- Flanagan, R.; Lu, W.; Shen, L.; Jewell, C. Competitiveness in construction: A critical review of research. Constr. Manag. Econ. 2007, 25, 989–1000. [Google Scholar] [CrossRef]
- La Rovere, R.L. Small and Medium-Sized Enterprises and IT Diffusion Policies in Europe. Small Bus. Econ. 1998, 11, 1–9. [Google Scholar] [CrossRef]
- Porter, M.E. On Competition; Harvard Business Press: Boston, MA, USA, 2008. [Google Scholar]
- Kovacova, M.; Machova, V.; Bennett, D. Immersive Extended Reality Technologies, Data Visualization Tools, and Customer Behavior Analytics in the Metaverse Commerce. J. Self Gov. Manag. Econ. 2022, 10, 7–21. [Google Scholar]
- Durana, P.; Perkins, N.; Valaskova, K. Artificial intelligence data-driven internet of things systems, real-time ad-vanced analytics, and cyber-physical production networks in sustainable smart manufacturing. Econ. Manag. Financ. Mark. 2021, 16, 20–31. [Google Scholar]
- Matyja, M. Resources based factors of competitiveness of agricultural enterprises. Management 2016, 20, 368–381. [Google Scholar] [CrossRef]
- Ling, F.Y.; Gui, Y. Strengths, Weaknesses, Opportunities, and Threats: Case Study of Consulting Firms in Shenzhen, China. J. Constr. Eng. Manag. 2009, 135, 628–636. [Google Scholar] [CrossRef]
- Lu, W.; Shen, L.; Yam, M.C.H. Critical Success Factors for Competitiveness of Contractors: China Study. J. Constr. Eng. Manag. 2008, 134, 972–982. [Google Scholar] [CrossRef]
- Warszawski, A. Strategic Planning in Construction Companies. J. Constr. Eng. Manag. 1996, 122, 133–140. [Google Scholar] [CrossRef]
- Arslan, G.; Kivrak, S. Critical Factors to Company Success in the Construction Industry. Civ. Eng. 2008, 45, 404–407. [Google Scholar]
- Tan, Y. Contractor’s Competitiveness and Competitive Strategy in Hong Kong. Ph.D. Thesis, Hong Kong Polytechnic University, Hong Kong, 2009. [Google Scholar]
- Nurisra; Malahayati, N.; Mahmuddin. The main factor affecting the competitiveness of Contractor Company. IOP Conf. Ser. Mater. Sci. Eng. 2018, 352, 012034. [Google Scholar] [CrossRef]
- Huda, M.; Rini, T.S.; Siswoyo; Azizah, S. The impact of the company’s environment to performance and competitiveness of Indonesian construction companies. Int. J. Civ. Eng. Technol. 2018, 9, 1221–1232. [Google Scholar]
- Asgari, M.; Kheyroddin, A.; Naderpour, H. Evaluation of project critical success factors for key construction players and objectives. Int. J. Eng. Trans. B Appl. 2018, 31, 228–240. [Google Scholar]
- Durdyev, S.; Eng, H.T.; Cheng, K.Y. Quantification of Critical Success Factors of Contractors in Cambodia: AHP Approach. J. Manag. Econ. Ind. Organ. 2018, 2, 51–61. [Google Scholar] [CrossRef]
- Tripathi, K.K.; Jha, K.N. An empirical study on factors leading to the success of construction organizations in India. Int. J. Constr. Manag. 2019, 19, 222–239. [Google Scholar] [CrossRef]
- Somiah, M.K.; Aigbavboa, C.O.; Thwala, W.D. Critical Success Strategies for Competitive Advantage of Indigenous Construction Firms in Developing Countries: A Ghana Study. Glob. Bus. Rev. 2020, 23, 1188–1199. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, H.; Zhang, L. Influence Factors on General Contractor Capability in the Context of Transforming China. Adv. Civ. Eng. 2020, 2020, 8874579. [Google Scholar] [CrossRef]
- Toan, N.Q.; Van Tam, N.; Hai, D.T.; Quy, N.L.D. Critical factors affecting labor productivity within construction project implementation: A project manager’s perspective. Entrep. Sustain. Issues 2020, 8, 751–763. [Google Scholar]
- Zeibote, Z.; Volkova, T.; Todorov, K. The impact of globalization on regional development and competitiveness: Cases of selected regions. Insights Reg. Dev. 2019, 1, 33–47. [Google Scholar] [CrossRef]
- Dobrovolskienė, N.; Pozniak, A. Similarity to an Ideal Solution: Which Method Is Better Suited for Assessing. Entrep. Sustain. Issues 2021, 8, 180–196. [Google Scholar]
- Krulický, T.; Machová, V.; Dvorák, O. Actual Paid Cost Equity in Construction. Entrep. Sustain. Issues 2022, 10, 408–418. [Google Scholar] [CrossRef]
- Nassar, N.; Strielkowski, W. Transition towards green financial sector for gaining newly perceived competitiveness by adopting a green management model. Insights Reg. Dev. 2022, 4, 71–88. [Google Scholar] [CrossRef]
- Bozgulova, N.; Parmanova, R.; Abenova, M.; Ivanyuk, T. Calculation Methods for Cost Management in The Con-struction Industry. Entrep. Sustain. Issues 2019, 7, 1450–1461. [Google Scholar]
- Ittmann, H.W. The current state of OR in Africa. Oper. Res. 2021, 21, 1793–1825. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antucheviciene, J.; Adeli, H.; Turskis, Z. Hybrid multiple criteria decision making methods: A review of applications in engineering. Sci. Iran. 2016, 23, 1–20. [Google Scholar]
- Pelissari, R.; Oliveira, M.C.; Ben Amor, S.; Kandakoglu, A.; Helleno, A.L. SMAA methods and their applications: A literature review and future research directions. Ann. Oper. Res. 2020, 293, 433–493. [Google Scholar] [CrossRef]
- Zhang, S.; Qiao, W.; Wu, Y.; Fan, Z.; Zhang, L. Multi-Response Optimization of Ultrafine Cement-Based Slurry Using the Taguchi-Grey Relational Analysis Method. Materials 2021, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, B.; Mukhopadhyay, S. Erosion susceptibility mapping of sub-watersheds for management prioritization using MCDM-based ensemble approach. Arab. J. Geosci. 2021, 14, 36. [Google Scholar] [CrossRef]
- Firouzi, S.; Allahyari, M.S.; Isazadeh, M.; Nikkhah, A.; Van Haute, S. Hybrid multi-criteria decision-making ap-proach to select appropriate biomass resources for biofuel production. Sci. Total Environ. 2021, 770, 144449. [Google Scholar] [CrossRef]
- Ali, T.; Nahian, A.J.; Ma, H. A hybrid multi-criteria decision-making approach to solve renewable energy technology selection problem for Rohingya refugees in Bangladesh. J. Clean. Prod. 2020, 273, 122967. [Google Scholar] [CrossRef]
- Chand, M.; Bhatia, N.; Singh, R.K. ANP-MOORA-based approach for the analysis of selected issues of green supply chain management. Benchmarking Int. J. 2018, 25, 642–659. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Pourhossein, M.; Yazdani, M.; Zavadskas, E.K. Evaluating construction projects of hotels based on environmental sustainability with MCDM framework. Alex. Eng. J. 2018, 57, 357–365. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Q.; Wan, X.; Li, X.; Wang, Y.; Wang, W. Comprehensive ecological risk assessment for semi-arid basin based on conceptual model of risk response and improved TOPSIS model-a case study of Wei River Basin, China. Sci. Total Environ. 2020, 719, 137502. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; Mcgraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Mohammed Abdelkader, E.; Marzouk, M.; Zayed, T. An Invasive Weed Optimization-based Fuzzy Decision-making Framework for Bridge Intervention Prioritization in Element and Network Levels. Int. J. Inf. Technol. Decis. Mak. 2020, 19, 1189–1246. [Google Scholar] [CrossRef]
- Feyzi, S.; Khanmohammadi, M.; Abedinzadeh, N.; Aalipour, M. Multi-criteria decision analysis FANP based on GIS for siting municipal solid waste incineration power plant in the north of Iran. Sustain. Cities Soc. 2019, 47, 101513. [Google Scholar] [CrossRef]
- Fallah-Aliabadi, S.; Ostadtaghizadeh, A.; Fatemi, F.; Ardalan, A.; Rezaei, E.; Raadabadi, M.; Heydari, A. Hospital disaster resilience: Development of an assessment tool using expert panel and fuzzy analytical network process. Int. J. Disaster Resil. Built Environ. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Bhatt, N.; Rajasekar, E.; Patel, H. Assessment of Critical Causes of Conflicts for Building Construction Projects in India Using Fuzzy Analytical Network Process. J. Inst. Eng. India Ser. A 2021, 102, 919–941. [Google Scholar] [CrossRef]
- Cavalcante, C.A.V.; Alencar, M.H.; Lopes, R.S. Multicriteria Model to Support Maintenance Planning in Residential Complexes under Warranty. J. Constr. Eng. Manag. 2017, 143, 04016110. [Google Scholar] [CrossRef]
- Dell’Anna, F.; Bottero, M.; Becchio, C.; Corgnati, S.P.; Mondini, G. Designing a decision support system to evaluate the environmental and extra-economic performances of a nearly zero-energy building. Smart Sustain. Built Environ. 2020, 9, 413–442. [Google Scholar] [CrossRef]
- Babaei, S.; Ghazavi, R.; Erfanian, M. Urban flood simulation and prioritization of critical urban sub-catchments using SWMM model and PROMETHEE II approach. Phys. Chem. Earth Parts A/B/C 2018, 105, 3–11. [Google Scholar] [CrossRef]
- Ma, Q.; Ohsaki, M.; Chen, Z.; Yan, X. Multi-objective optimization for prestress design of cable-strut structures. Int. J. Solids Struct. 2019, 165, 137–147. [Google Scholar] [CrossRef]
- Mohammed Abdelkader, E.; Moselhi, O.; Marzouk, M.; Zayed, T. An Integrative Evolutionary-based Method for Modeling and Optimizing Resource Allocation of Bridge Deck Replacement Projects. J. Constr. Eng. Manag. 2021, 147, 1–23. [Google Scholar]
- Marzouk, M.; Mohammed Abdelkader, E. On the use of multi-criteria decision making methods for minimizing environmental emissions in construction projects. Decis. Sci. Lett. 2019, 8, 373–392. [Google Scholar] [CrossRef]
- Yu, X.; Li, C.; Chen, H.; Ji, Z. Evaluate Air Pollution by Promethee Ranking in Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2020, 17, 587. [Google Scholar] [CrossRef]
- Wu, Y.; Ke, Y.; Xu, C.; Li, L. An integrated decision-making model for sustainable photovoltaic module supplier selection based on combined weight and cumulative prospect theory. Energy 2019, 181, 1235–1251. [Google Scholar] [CrossRef]
- Meng, X.; Brown, A. Innovation in construction firms of different sizes: Drivers and strategies. Eng. Constr. Archit. Manag. 2018, 25, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Reshetnikova, I.; Zotkina, N.; Gusarova, M. Selection of recruitment methods in construction organizations. MATEC Web Conf. 2019, 265, 07009. [Google Scholar] [CrossRef]
- Shokri-Ghasabeh, M.; Chileshe, N. Knowledge management: Barriers to capturing lessons learned from Australian construction contractors perspective. Constr. Innov. 2014, 14, 108–134. [Google Scholar] [CrossRef]
- El-Mashaleh, M.S.; Minchin, R.E.; O’Brien, W.J. Management of Construction Firm Performance Using Benchmarking. J. Manag. Eng. 2007, 23, 10–17. [Google Scholar] [CrossRef]
- Oo, B.L.; Lo, H.; Lim, B.T. The effect of bidding success in construction bidding. Eng. Constr. Archit. Manag. 2012, 19, 25–39. [Google Scholar]
- Abidin, N.Z.; Adros, N.A.; Hassan, H. Competitive strategy and performance of quantity surveying firms in Malaysia. J. Constr. Dev. Ctries. 2014, 19, 15–32. [Google Scholar]
- Tamer, Z.; Yoon, Y.; Hastak, M. Protocol for Profitability Analysis Using Internal Entities in Organizational Structure of Construction Companies. J. Constr. Eng. Manag. 2012, 138, 1394–1402. [Google Scholar] [CrossRef]
- Shlepneva, T.O.; Maletina, T.A. Marketing in construction, as a systematic approach to managing the activities of a construction organization. IOP Conf. Ser. Earth Environ. Sci. 2021, 751, 012176. [Google Scholar] [CrossRef]
- Kuo, Y.-L. Technology readiness as moderator for construction company performance. Ind. Manag. Data Syst. 2013, 113, 558–572. [Google Scholar] [CrossRef]
- Krimi, I.; Lafhaj, Z.; Ducoulombier, L. Prospective study on the integration of additive manufacturing to building industry—Case of a French construction company. Addit. Manuf. 2017, 16, 107–114. [Google Scholar] [CrossRef]
- Kalinichenko, L.; Smachylo, V.; Khalina, V. Realities and perspectives for human resources development of the construction sector. Econ. Ecol. Socium 2019, 3, 56–66. [Google Scholar] [CrossRef]
- Ling, F.Y.; Li, S.; Low, S.P.; Ofori, G. Mathematical models for predicting Chinese A/E/C firms’ competitiveness. Autom. Constr. 2012, 24, 40–51. [Google Scholar] [CrossRef]
- Pellicer, E.; Yepes, V.; Correa, C.L.; Alarcón, L.F. Organizational improvement through standardization of the innovation process in construction firms. Eng. Manag. J. 2012, 24, 40–53. [Google Scholar] [CrossRef]
- Basar, P. The analytic hierarchy process method to design strategic decision making for the effective assessment of supplier selection in construction industry. Res. J. Bus. Manag. 2018, 5, 142–149. [Google Scholar] [CrossRef]
- Seth, D.; Nemani, K.; Pokharel, S.; Al Sayed, A.Y. Impact of competitive conditions on supplier evaluation: A construction supply chain case study. Prod. Plan. Control 2018, 29, 217–235. [Google Scholar] [CrossRef]
- Sambasivan, M.; Soon, Y.W. Causes and effects of delays in Malaysian construction industry. Int. J. Proj. Manag. 2007, 25, 517–526. [Google Scholar] [CrossRef]
- Zilberova, I.; Petrov, K.; Artsishevsky, M. Actual Problems of Management Quality Control of a Construction Company. IOP Conf. Ser. Mater. Sci. Eng. 2020, 753, 042020. [Google Scholar] [CrossRef]
- Arditi, D.; Koksal, A.; Kale, S. Business failures in the construction industry. Eng. Constr. Archit. Manag. 2000, 7, 120–132. [Google Scholar] [CrossRef]
- Isik, Z.; Arditi, D.; Dikmen, I.; Birgonul, M.T. Impact of Resources and Strategies on Construction Company Per-formance. J. Manag. Eng. 2010, 26, 1–10. [Google Scholar] [CrossRef]
- Ogonna, I.; Callistus, O.; Ifedi, O. Macroeconomic Factors and Real Estate Investment in Nigeria. Int. J. Manag. Entrep. 2020, 3, 216–226. [Google Scholar]
- Mattioli, F. Financialization without liquidity: In-kind payments, forced credit, and authoritarianism at the periphery of Europe. J. R. Anthropol. Inst. 2018, 24, 568–588. [Google Scholar] [CrossRef]
- Halkos, G.E.; Nomikos, S.N. Reviewing the status of corporate social responsibility (CSR) legal framework. Manag. Environ. Qual. Int. J. 2021, 32, 700–716. [Google Scholar] [CrossRef]
- Ebekozien, A. Corrupt acts in the Nigerian construction industry: Is the ruling party fighting corruption? J. Contemp. Afr. Stud. 2020, 38, 348–365. [Google Scholar] [CrossRef]
- Bartoš, V.; Vochozka, M.; Janíková, J. Fair value in squeeze-out of large mining companies. Acta Montan. Slovaca 2021, 26, 712–731. [Google Scholar]
- Verstina, N. Formation of tools of resource providing management at the enterprise of the industry of construction materials in modern conditions. MATEC Web Conf. 2017, 106, 8091. [Google Scholar] [CrossRef] [Green Version]
- Horta, I.; Camanho, A. Company failure prediction in the construction industry. Expert Syst. Appl. 2013, 40, 6253–6257. [Google Scholar] [CrossRef]
- Choi, J.K.; Yoo, S.K.; Kim, J.H.; Kim, J.J. Capital structure determinants among construction companies in South Korea: A quantile regression approach. J. Asian Archit. Build. Eng. 2014, 13, 93–100. [Google Scholar] [CrossRef]
- You, T.; Zi, H. The economic crisis and efficiency change: Evidence from the Korean construction industry. Appl. Econ. 2007, 39, 1833–1842. [Google Scholar] [CrossRef]
- Hasanuddin; Risal, M.; Aqsa, M. The Influence of Financial Ratios and Intellectual Capital on Financial Difficulties in Construction Companies. In Proceedings of the 7th International Conference on Community Development (ICCD 2020), Online, 18 July 2020; pp. 303–307. [Google Scholar]
- Chen, J.-H.; Hsu, S.-C.; Wang, R.; Chou, H.-A. Improving Hedging Decisions for Financial Risks of Construction Material Suppliers Using Grey System Theory. J. Manag. Eng. 2017, 33, 04017016. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Network Process. In Encyclopedia of Operations Research and Management Science; Gass, S.I., Harris, C.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Kahraman, C.; Ertay, T.; Büyüközkan, G. A fuzzy optimization model for QFD planning process using analytic network approach. Eur. J. Oper. Res. 2006, 171, 390–411. [Google Scholar] [CrossRef]
- Mikhailov, L. A fuzzy programming method for deriving priorities in the analytic hierarchy process. J. Oper. Res. Soc. 2000, 51, 341–349. [Google Scholar] [CrossRef]
- Așchilean, I.; Giurca, I. Choosing a water distribution pipe rehabilitation solution using the analytical network process method. Water 2018, 10, 484. [Google Scholar] [CrossRef]
- Melani, A.H.A.; Murad, C.A.; Netto, A.C.; De Souza, G.F.M.; Nabeta, S.I. Criticality-based maintenance of a coal-fired power plant. Energy 2018, 147, 767–781. [Google Scholar] [CrossRef]
- Brans, J.P. L’ingénièrie de la décision: Elaboration d’instruments d’aide àla décision. La méthode PROMETHEE. In Laide a la Decision: Nature, Instruments et Perspectives Davenir; Nadaeau, R., Landry, M., Eds.; Laval University: Quebec, QC, Canada, 1982. [Google Scholar]
- Brans, J.P.; Vincke, D.P. A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef]
- Arsić, S.; Nikolic, D.; Jevtic, M. An investigation of the usability of image-based CAPTCHAs using PROME-THEE-GAIA method. Multimed. Tools Appl. 2021, 80, 9393–9409. [Google Scholar] [CrossRef]
- Andreopoulou, Z.; Koliouska, C.; Galariotis, E.; Zopounidis, C. Renewable energy sources: Using PROMETHEE II for ranking websites to support market opportunities. Technol. Forecast. Soc. Chang. 2018, 131, 31–37. [Google Scholar]
- Polat, G. Subcontractor selection using the integration of the AHP and PROMETHEE methods. J. Civ. En-Gineering Manag. 2016, 22, 1042–1054. [Google Scholar] [CrossRef]
- Asif, Z.; Chen, Z. An Integrated Multicriteria Decision Analysis System for Reducing Air Emissions from Mining Process. Environ. Model. Assess. 2019, 24, 517–531. [Google Scholar] [CrossRef]
- Brankovic, J.M.; Markovic, M.; Nikolic, D. Comparative study of hydraulic structures alternatives using promethee II complete ranking method. Water Resour. Manag. 2018, 32, 3457–3471. [Google Scholar] [CrossRef]
- Kolios, A.; Mytilinou, V.; Lozano-Minguez, E.; Salonitis, K. A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs. Energies 2016, 9, 566. [Google Scholar] [CrossRef]
- Balusa, B.C.; Gorai, A.K. A Comparative Study of Various Multi-criteria Decision-Making Models in Underground Mining Method Selection. J. Inst. Eng. India Ser. D 2019, 100, 105–121. [Google Scholar] [CrossRef]
- Gervásio, H.; Simões Da Silva, L. A probabilistic decision-making approach for the sustainable assessment of in-frastructures. Expert Syst. Appl. 2012, 39, 7121–7131. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The Promethee method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
Main Categories | Wc | Sub-Categories | Ws | Factors | Wf | Wf_g |
---|---|---|---|---|---|---|
Internal Factors/Non-Financial | 28% | Organization performance | 36.8% | Human knowledge | 21.2% | 2.2% |
Company resources | 21.2% | 2.2% | ||||
Bidding | 21.2% | 2.2% | ||||
Competitive strategy | 21.2% | 2.2% | ||||
Organization structure | 15.2% | 1.6% | ||||
Project performance | 36.9% | Time | 14.3% | 1.5% | ||
Costs | 25.7% | 2.7% | ||||
Quality | 20% | 2.1% | ||||
Other project management systems | 20% | 2.1% | ||||
Innovation and development performance | 26.3% | Marketing | 20% | 2.1% | ||
Technology abilities | 13.9% | 1% | ||||
Adjusting one’s ability | 13.9% | 1% | ||||
Human resources development and learning | 13.9% | 1% | ||||
Research and development ability | 18.4% | 1.4% | ||||
Companies adaptation to new environments | 20.6% | 1.5% | ||||
External Factors/Non-Financial | 36% | Clients, industry conditions and relationships | 50% | Clients | 19.4% | 1.4% |
Industry conditions | 33.3% | 6.0% | ||||
Regional economy, legislation and political aspects | 50% | Relationships | 23.8% | 4.3% | ||
Economic Factors | 42.9% | 7.7% | ||||
Legislation and political aspects | 50.0% | 9% | ||||
Financial factors | 36% | Financial factors | 100% | Profit margin ratio | 50.0% | 9% |
Activity ratio | 20.0% | 7.2% | ||||
Leverage ratio | 14.3% | 5.1% | ||||
Liquidity ratio | 20% | 7.2% | ||||
Growth ratio | 25.7% | 9.3% |
Case Study | Location | Establishment Year | Area of Expertise |
---|---|---|---|
Construction Company 1 | Doha, Qatar | 2002 | Housing, bridges, buildings, and roads |
Construction Company 2 | Cairo, Egypt | 1982 | Buildings, houses and roads |
Construction Company 3 | Canada | 1937 | Residential and commercial, and infrastructure construction |
Construction Company 4 | Vietnam | 1997 | Commercial, residential and infrastructure construction |
Construction Company 5 | United Kingdom | 1999 | Roads and bridges |
Company | Competitiveness Index |
---|---|
Company 1 | 6.25 |
Company 2 | 5.5 |
Company 3 | 6.01 |
Company 4 | 2.3 |
Company 5 | 8.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badawy, A.; Al-Sakkaf, A.; Alfalah, G.; Mohammed Abdelkader, E.; Zayed, T. Scrutinizing Competitiveness of Construction Companies Based on an Integrated Multi-Criteria Decision Making Model. CivilEng 2022, 3, 850-872. https://doi.org/10.3390/civileng3040049
Badawy A, Al-Sakkaf A, Alfalah G, Mohammed Abdelkader E, Zayed T. Scrutinizing Competitiveness of Construction Companies Based on an Integrated Multi-Criteria Decision Making Model. CivilEng. 2022; 3(4):850-872. https://doi.org/10.3390/civileng3040049
Chicago/Turabian StyleBadawy, Ahmed, Abobakr Al-Sakkaf, Ghasan Alfalah, Eslam Mohammed Abdelkader, and Tarek Zayed. 2022. "Scrutinizing Competitiveness of Construction Companies Based on an Integrated Multi-Criteria Decision Making Model" CivilEng 3, no. 4: 850-872. https://doi.org/10.3390/civileng3040049
APA StyleBadawy, A., Al-Sakkaf, A., Alfalah, G., Mohammed Abdelkader, E., & Zayed, T. (2022). Scrutinizing Competitiveness of Construction Companies Based on an Integrated Multi-Criteria Decision Making Model. CivilEng, 3(4), 850-872. https://doi.org/10.3390/civileng3040049