Unlocking Energy from Waste: A Comprehensive Analysis of Municipal Solid Waste Recovery Potential in Ghana
Abstract
:1. Introduction
Research Questions
- What is the most sustainable waste-to-energy (WtE) option for managing Ghana’s waste crisis, considering environmental, economic, and social factors?
- How do the environmental impacts of incineration, anaerobic digestion, gasification, and landfill gas compare for waste management in Ghana?
- What are the characteristics of solid waste in Ghana?
- What is the economic feasibility of utilizing biogas from anaerobic digestion compared to traditional energy sources like light crude oil?
- What are the key obstacles hindering the development of WtE in Ghana?
- We hypothesize that anaerobic digestion will emerge as the most sustainable WtE option due to its potential for renewable energy production, valuable bio-product creation, and lower greenhouse gas emissions compared to other methods.
- We further hypothesize that utilizing biogas from anaerobic digestion will be more cost effective than relying on fossil fuels like light crude oil.
2. Materials and Methods
2.1. Eligibility and Exclusion Criteria
2.2. Systematic Review Process
3. Results and Discussions
3.1. Solid Waste Generation and Characteristics in Ghana
3.2. The State of Solid Waste Management in Ghana
3.3. Waste-to-Energy Technologies and Their Status in Ghana
3.3.1. Incineration
3.3.2. Anaerobic Digestion
3.3.3. Gasification
3.3.4. Landfill Gas (LFG)
3.4. Energy Potential from Municipal Solid Waste in Ghana
3.5. Adoption and Implementation of WtE Technologies
3.5.1. Socio-Economic Impact of WtE Technologies
3.5.2. Technical and Environmental Impact of WtE Technologies
3.6. WtE Technology Suitability Comparison for Ghana
3.7. Barriers to WtE Implementation in Developing Countries
3.8. Policies on WtE in Ghana
3.9. Incentives for Waste-to-Energy in Ghana
4. A Business Case for WtE in Ghana
- Biogas Cost per Unit Volume: USD 2.90 per 1000 ft3 translates to USD 0.103 per cubic meter (m3) (considering conversion from ft³ to m3).
- Daily Biogas Cost: Daily biogas production (1,226,805 m³) multiplied by the cost per cubic meter (USD 0.103) results in USD 126,659.36.
- Monthly Biogas Cost for 79.5 MW: Assuming biogas can generate 79.5 MW, the monthly cost is USD 126,659.36 × 30 days = USD 3,799,780.80.
- Biogas Cost for 200 MW: Since 200 MW is 2.51 times greater than 79.5 MW, the cost for 200 MW is USD 3,799,780.80 × 2.51 = USD 9,539,461.98.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cerqueti, R.; Cinelli, M.; Minervini, L.F. Municipal waste management: A complex network approach with an application to Italy. Waste Manag. 2021, 126, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Iyamu, H.O.; Anda, M.; Ho, G. A review of municipal solid waste management in the BRIC and high-income countries: A thematic framework for low-income countries. Habitat Int. 2020, 95, 102097. [Google Scholar] [CrossRef]
- Wan, C.; Shen, G.Q.; Choi, S. Waste management strategies for sustainable development. In Encyclopedia of Sustainability in Higher Education; Springer International Publishing: Cham, Switzerland, 2019; pp. 2020–2028. [Google Scholar]
- Woon, K.S.; Phuang, Z.X.; Lin, Z.; Lee, C.T. A novel food waste management framework combining optical sorting system and anaerobic digestion: A case study in Malaysia. Energy 2021, 232, 121094. [Google Scholar] [CrossRef]
- Obaideen, K.; Abdelkareem, M.A.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Maghrabie, H.M.; Olabi, A.G. Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines. J. Taiwan Inst. Chem. Eng. 2022, 131, 104207. [Google Scholar] [CrossRef]
- Ikhlayel, M. An integrated approach to establish e-waste management systems for developing countries. J. Clean. Prod. 2018, 170, 119–130. [Google Scholar] [CrossRef]
- Tahirua, A.W.; Cobbina, S.J.; Asare, W. Unlocking the Renewable Energy Potential in Developing Countries: The Case of Ghana. In Proceedings of the Africa International Conference on Clean Energy and Energy Storage, online, 23–24 November 2023. [Google Scholar]
- Ardra, S.; Barua, M.K. Halving food waste generation by 2030: The challenges and strategies of monitoring UN sustainable development goal target 12.3. J. Clean. Prod. 2022, 380, 135042. [Google Scholar] [CrossRef]
- He, J.; Yang, Y.; Liao, Z.; Xu, A.; Fang, K. Linking SDG 7 to assess the renewable energy footprint of nations by 2030. Appl. Energy 2022, 317, 119167. [Google Scholar] [CrossRef]
- Beyene, H.D.; Werkneh, A.A.; Ambaye, T.G. Current updates on waste to energy (WtE) technologies: A review. Renew. Energy Focus 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Boakes, E.; Voogd, J.; Wauters, G.; Caneghem, J. The influence of energy output and substitution on the environmental impact of waste-to-energy operation: Quantification by means of a case study. Clean Technol. Environ. Policy 2021, 25, 253–267. [Google Scholar] [CrossRef]
- Ali, J.; Rasheed, T.; Afreen, M.; Anwar, M.T.; Nawaz, Z.; Anwar, H.; Rizwan, K. Modalities for conversion of waste to energy—Challenges and perspectives. Sci. Total Environ. 2020, 727, 138610. [Google Scholar] [CrossRef]
- Hoang, A.T.; Varbanov, P.S.; Nižetić, S.; Sirohi, R.; Pandey, A.; Luque, R.; Ng, K.H. Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy. J. Clean. Prod. 2022, 359, 131897. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Liang, X.; O’Callaghan, E.; Goh, H.; Othman, M.H.D.; Avtar, R.; Kusworo, T.D. Transformation of solid waste management in China: Moving towards sustainability through digitalization-based circular economy. Sustainability 2022, 14, 2374. [Google Scholar] [CrossRef]
- Gómez-Sanabria, A.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Haberl, H. Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nat. Commun. 2022, 13, 106. [Google Scholar] [CrossRef]
- Lima, M.A.; Mendes, L.F.R.; Mothé, G.A.; Linhares, F.G.; de Castro, M.P.P.; Da Silva, M.G.; Sthel, M.S. Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environ. Dev. 2020, 33, 100504. [Google Scholar] [CrossRef]
- Abbasi, S.A.; Harijan, K.; Khan, M.W.A.; Mengal, A.; Shaikh, F.; Memon, Z.A.; Mirjat, N.H.; Kumar, L. Long-term optimal power generation pathways for Pakistan. Energy Sci. Eng. 2021, 9, 2252–2267. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Wu, F. Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory. Renew. Energy 2020, 155, 456–468. [Google Scholar] [CrossRef]
- Tahiru, A.W.; Takal, S.U.; Sunkari, E.D.; Ampofo, S. A Review on Renewable Energy Scenario in Ethiopia. Iran. (Iran.) J. Energy Environ. 2023, 14, 372–384. [Google Scholar] [CrossRef]
- Takal, S.U.; Tahiru, A.W.; Owusu-Sakyere, E. The Role of Local Level Institutional Arrangements in Climate Change Adaptation of Rural Dwellers in Northern Ghana. Iran. J. Energy Environ. 2023. [Google Scholar]
- Hemidat, S.; Achouri, O.; Fels, L.; Elagroudy, S.; Hafidi, M.; Chaouki, B.; Ahmed, M.; Hodgkinson, I.; Guo, J. Solid Waste Management in the Context of a Circular Economy in the MENA Region. Sustainability 2022, 14, 480. [Google Scholar] [CrossRef]
- Bulus, G.; Koc, S. The effects of FDI and government expenditures on environmental pollution in Korea: The pollution haven hypothesis revisited. Environ. Sci. Pollut. Res. 2021, 28, 38238–38253. [Google Scholar] [CrossRef]
- Jo, C.H.; Kang, K.H.; Kim, R.H.; Kim, S.I. Life cycle–based, energy-related analysis for waste management strategies: A case study of two impact indicators in Pyongyang. Environ. Sci. Pollut. Res. 2021, 28, 13365–13374. [Google Scholar]
- Scott, N.; Goode, D. The use of social media (some) as a learning tool in healthcare education: An integrative review of the literature. Nurse Educ. Today 2020, 87, 104357. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Jain, S. Municipal solid waste generation, composition, and management: The global scenario. Soc. Responsib. J. 2020, 16, 917–948. [Google Scholar] [CrossRef]
- Miezah, K.; Obiri-Danso, K.; Kádár, Z.; Fei-Baffoe, B.; Mensah, M.Y. Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana. Waste Manag. 2015, 46, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Stafford, W.H. WtE best practices and perspectives in Africa. In Municipal Solid Waste Energy Conversion in Developing Countries; Elsevier: Amsterdam, The Netherlands, 2020; pp. 185–217. [Google Scholar]
- Denteh, S.N.; Cobinna, S.J.; Adam, W.; Aboka, E.Y. Household solid waste management: Compositional analysis, storage, and collection in the Vittin Target Areas, Tamale Ghana. UDS Int. J. Dev. 2018, 5, 105–116. [Google Scholar] [CrossRef]
- Owusu-Nimo, F.; Oduro-Kwarteng, S.; Essandoh, H.; Wayo, F.; Shamudeen, M. Characteristics and management of landfill solid waste in Kumasi, Ghana. Sci. Afr. 2019, 3, e00052. [Google Scholar] [CrossRef]
- Gyimah, P.; Mariwah, S.; Antwi, K.B.; Ansah-Mensah, K. Households’ solid waste separation practices in the Cape Coast Metropolitan area, Ghana. GeoJournal 2021, 86, 567–583. [Google Scholar] [CrossRef]
- Seshie, V.I.; Obiri-Danso, K.; Miezah, K. Municipal solid waste characterisation and quantification as a measure towards effective waste management in the Takoradi Sub-Metro, Ghana. Ghana Min. J. 2020, 20, 15–27. [Google Scholar] [CrossRef]
- Otoo, C.K. A Research on the Technical and Financial Feasibility of Waste Incineration Technology in Ghana. Master’s Thesis, University of Vaasa, Helsinki, Finland, 2023. Available online: https://urn.fi/URN:NBN:fi-fe2023052447270 (accessed on 5 December 2023).
- Nukpezah, D.; Quarshie, J.T.; Nyarko, E.; Hogarh, J.N. Characterisation of litter and their deposition at the banks of coastal lagoons in Ghana. Heliyon 2022, 8, e08997. [Google Scholar] [CrossRef]
- Addae, G.; Oduro-Kwarteng, S.; Fei-Baffoe, B.; Rockson, M.A.D.; Ribeiro, J.X.F.; Antwi, E. Market waste composition analysis and resource recovery potential in Kumasi, Ghana. J. Air Waste Manag. Assoc. 2021, 71, 1529–1544. [Google Scholar] [CrossRef]
- Safo-Adu, G.; Owusu-Adzorah, N. Solid waste characterisation and recycling potential: A study in secondary schools in Kumasi Metropolis, Ghana. Clean. Waste Syst. 2023, 1, 100006. [Google Scholar] [CrossRef]
- Asare, W.; Oduro-Kwarteng, S.; Donkor, E.A.; Rockson, M.A. Incentives for improving municipal solid waste source separation behaviour: The case of Tamale Metropolis, Ghana. SN Soc. Sci. 2021, 1, 132. [Google Scholar] [CrossRef]
- Asare, W.; Oduro Kwarteng, S.; Donkor, E.A.; Rockson, M.A. Recovery of municipal solid waste recyclables under different incentive schemes in Tamale, Ghana. Sustainability 2020, 12, 9869. [Google Scholar] [CrossRef]
- Ghana Statistical Services. 2021. Available online: https://statsghana.gov.gh/nationalaccount_macros.php?Stats=MTA1NTY1NjgxLjUwNg==/webstats/s679n2sn87 (accessed on 30 August 2023).
- Ferronato, N.; Torretta, V. Waste mismanagement in developing countries: A review of global issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed]
- Oduro-Appiah, K.; Afful, A.; Kotey, V.N.; De Vries, N. Working with the informal service chain as a locally appropriate strategy for sustainable modernization of municipal solid waste management systems in lower-middle income cities: Lessons from Accra, Ghana. Resources 2019, 8, 12. [Google Scholar] [CrossRef]
- Amo-Asamoah, E.; Owusu-Manu, D.G.; Asumadu, G.; Ghansah, F.A.; Edwards, D.J. Potential for waste to energy generation of municipal solid waste (MSW) in the Kumasi metropolis of Ghana. Int. J. Energy Sect. Manag. 2020, 14, 1315–1331. [Google Scholar] [CrossRef]
- Osei-Appiah, N.A.; Dioha, M.O. Techno-Economic Assessment of Waste-to-Energy Technologies in Ghana. J. Sustain. Energy 2019, 10, 2. [Google Scholar]
- Qazi, W.A.; Abushammala, M.F.; Azam, M.H. Multi-criteria decision analysis of waste-to-energy technologies for municipal solid waste management in Sultanate of Oman. Waste Manag. Res. 2018, 36, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Akram, H.; Butt, T.E. WET nexus between the three sectors—‘waste to energy for transport’. J. Clean. Prod. 2022, 339, 130545. [Google Scholar] [CrossRef]
- Lee, R.P.; Tschoepe, M.; Voss, R. Perception of chemical recycling and its role in the transition towards a circular carbon economy: A case study in Germany. Waste Manag. 2021, 125, 280–292. [Google Scholar] [CrossRef]
- Yong, Z.J.; Bashir, M.J.; Ng, C.A.; Sethupathi, S.; Lim, J.W.; Show, P.L. Sustainable Waste-to-Energy Development in Malaysia: Appraisal of Environmental, Financial, and Public Issues Related with Energy Recovery from Municipal Solid Waste. Green Technol. 2020, 7, 676. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Liu, J.; Li, T.; Xu, G.; Liu, W. Thermodynamic and economic evaluation of a novel waste-to-energy design incorporating anaerobic digestion and incineration. Energy Convers. Manag. 2022, 252, 115083. [Google Scholar] [CrossRef]
- Sani, S.; Zimucha, T. Municipal Solid Waste Management practices: Towards adoption of a Responsible Innovative Model for the City of Harare. J. Res. Innov. Sustain. Soc. 2022, 4, 110–128. [Google Scholar] [CrossRef]
- Ozturk, M.; Dincer, I. An efficient waste management system with municipal solid waste incineration plant. Greenh. Gases Sci. Technol. 2020, 10, 855–864. [Google Scholar] [CrossRef]
- Tait, P.W.; Brew, J.; Che, A.; Costanzo, A.; Danyluk, A.; Davis, M.; Khalaf, A.; McMahon, K.; Watson, A.; Rowcliff, K.; et al. The health impacts of waste incineration: A systematic review. Aust. N. Z. J. Public Health 2020, 44, 40–48. [Google Scholar] [PubMed]
- Khan, S.; Anjum, R.; Raza, S.T.; Bazai, N.A.; Ihtisham, M. Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere 2022, 288, 132403. [Google Scholar] [CrossRef] [PubMed]
- Boloy, R.A.M.; da Cunha Reis, A.; Rios, E.M.; de Araújo Santos Martins, J.; Soares, L.O.; de Sá Machado, V.A.; de Moraes, D.R. Waste-to-energy technologies towards circular economy: A systematic literature review and bibliometric analysis. Water Air Soil Pollut. 2021, 232, 306. [Google Scholar]
- Lu, J.W.; Zhang, S.; Hai, J.; Lei, M. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Manag. 2017, 69, 170–186. [Google Scholar] [CrossRef]
- Bianchi, G.; Panayiotou, G.P.; Aresti, L.; Kalogirou, S.A.; Florides, G.A.; Tsamos, K.; Tassou, S.A.; Christodoulides, P. Estimating the waste heat recovery in the European Union Industry. Energy Ecol. Environ. 2019, 4, 211–221. [Google Scholar] [CrossRef]
- Chen, Y. Effects of urbanization on municipal solid waste composition. Waste Manag. 2018, 79, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Agbejule, A.; Shamsuzzoha, A.; Lotchi, K.; Rutledge, K. Application of multi-criteria decision-making process to select waste-to-energy technology in developing countries: The case of Ghana. Sustainability 2021, 13, 12863. [Google Scholar] [CrossRef]
- Opoku, L.; Gyimah, A.G.; Addai, B. Harnessing waste-to-energy potential in developing countries: A case study of rural Ghana. Environ. Sci. Pollut. Res. 2022, 29, 58011–58021. [Google Scholar] [CrossRef] [PubMed]
- Naserian, E.S.; Cheraghi, M.; Lorestani, B.; Sobhanardakani, S.; Sadr, M.K. Qualitative investigation of sewage sludge composting: Effect of aerobic/anaerobic pretreatments. Arab. J. Geosci. 2021, 14, 1–9. [Google Scholar] [CrossRef]
- Chowdhury, T.H. Technical-economical analysis of anaerobic digestion process to produce clean energy. Energy Rep. 2021, 7, 247–253. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Okoh, A.I. Microbial anaerobic digestion: Process dynamics and implications from the renewable energy, environmental and agronomy perspectives. Int. J. Environ. Sci. Technol. 2019, 16, 3913–3934. [Google Scholar] [CrossRef]
- Mahmoud, M.; El-Qelish, M. Efficient Biogas Production Through Syntrophic Microbial Partnerships in the Presence of Conductive Materials in Anaerobic Digesters Treating Organic Waste Streams: A Critical Assessment. In Anaerobic Biodigesters for Human Waste Treatment; Springer Nature: Singapore, 2022; pp. 249–261. [Google Scholar]
- Lukitawesa; Patinvoh, R.J.; Millati, R.; Sarvari-Horvath, I.; Taherzadeh, M.J. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered 2020, 11, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Breitenmoser, L.; Gross, T.; Huesch, R.; Rau, J.; Dhar, H.; Kumar, S.; Hugi, C.; Wintgens, T. Anaerobic digestion of biowastes in India: Opportunities, challenges and research needs. J. Environ. Manag. 2019, 236, 396–412. [Google Scholar] [CrossRef] [PubMed]
- Hasan, K.M.; Hossain, M.A.; Hasan, M.T.; Moniruzzaman, M.; Islam, M.R. Prototype Biogas Plant for Residential Use. Ph.D. Thesis, Sonargoan University, Dhaka, Bangladesh, February, 2022. [Google Scholar]
- Jafar, R.; Awad, A. State and development of anaerobic technology for biogas production in Syria. Clean. Eng. Technol. 2021, 5, 100253. [Google Scholar] [CrossRef]
- Afrane, S.; Ampah, J.D.; Jin, C.; Liu, H.; Aboagye, E.M. Techno-economic feasibility of waste-to-energy technologies for investment in Ghana: A multicriteria assessment based on fuzzy TOPSIS approach. J. Clean. Prod. 2021, 318, 128515. [Google Scholar] [CrossRef]
- Havilah, P.R.; Sharma, A.K.; Govindasamy, G.; Matsakas, L.; Patel, A. Biomass gasification in downdraft gasifiers: A technical review on production, up-gradation and application of synthesis gas. Energies 2022, 15, 3938. [Google Scholar] [CrossRef]
- Gururani, P.; Bhatnagar, P.; Bisht, B.; Jaiswal, K.K.; Kumar, V.; Kumar, S.; Vlaskin, M.S.; Grigorenko, A.V.; Rindin, K.G. Recent advances and viability in sustainable thermochemical conversion of sludge to bio-fuel production. Fuel 2022, 316, 123351. [Google Scholar] [CrossRef]
- Fingleton-Smith, E. Smoke and mirrors—The complexities of cookstove adoption and use in Kenya. Environ. Dev. Sustain. 2022, 24, 3926–3946. [Google Scholar] [CrossRef]
- Asibey, M.O.; Yeboah, V.; Adabor, E.K. Palm biomass waste as supplementary source of electricity generation in Ghana: Case of the Juaben Oil Mills. Energy Environ. 2018, 29, 165–183. [Google Scholar] [CrossRef]
- Agyekum, A.K.; Fugar, F.D.K.; Agyekum, K.; Akomea-Frimpong, I.; Pittri, H. Barriers to stakeholder engagement in sustainable procurement of public works. Eng. Constr. Archit. Manag. 2023, 30, 3840–3857. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental sustainability impacts of solid waste management practices in the global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. [Google Scholar] [CrossRef] [PubMed]
- Cudjoe, D.; Nketiah, E.; Obuobi, B.; Adu-Gyamfi, G.; Adjei, M.; Zhu, B. Forecasting the potential and economic feasibility of power generation using biogas from food waste in Ghana: Evidence from Accra and Kumasi. Energy 2021, 226, 120342. [Google Scholar] [CrossRef]
- Darmey, J.; Ahiekpor, J.C.; Narra, S.; Achaw, O.W.; Ansah, H.F. Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review. Energies 2023, 16, 7753. [Google Scholar] [CrossRef]
- Amoah, A.; Kwablah, E.; Amoah, B.; Adjei-Mantey, K. Willingness to pay for electronic transaction levy: Empirical evidence from Ghana. Afr. J. Econ. Manag. Stud. 2023, 14, 663–679. [Google Scholar] [CrossRef]
- Barry, F.; Sawadogo, M.; Bologo, M.; Ouédraogo, I.W.; Dogot, T. Key barriers to the adoption of biomass gasification in Burkina Faso. Sustainability 2021, 13, 7324. [Google Scholar] [CrossRef]
- López, J.C.; Rodríguez, Y.; Pérez, V.; Lebrero, R.; Muñoz, R. CH 4-based polyhydroxyalkanoate production: A step further towards a sustainable bioeconomy. In Biotechnological Applications of Polyhydroxyalkanoates; Springer: Berlin/Heidelberg, Germany, 2019; pp. 283–321. [Google Scholar]
- Randazzo, A.; Asensio-Ramos, M.; Melián, G.V.; Venturi, S.; Padrón, E.; Hernández, P.A.; Pérez, N.M.; Tassi, F. Volatile organic compounds (VOCs) in solid waste landfill cover soil: Chemical and isotopic composition vs. degradation processes. Sci. Total Environ. 2020, 726, 138326. [Google Scholar] [CrossRef]
- Rawoof, S.A.A.; Kumar, P.S.; Vo, D.V.N.; Subramanian, S. Sequential production of hydrogen and methane by anaerobic digestion of organic wastes: A review. Environ. Chem. Lett. 2021, 19, 1043–1063. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Das, S.; Lee, S.-H.; Kumar, P.; Kim, K.-H.; Lee, S.S.; Bhattacharya, S.S. Solid waste management: Scope and the challenge of sustainability. J. Clean. Prod. 2019, 228, 658–678. [Google Scholar] [CrossRef]
- Bu, Q.; Cao, H.; He, X.; Zhang, H.; Yu, G. Is Disposal of Unused Pharmaceuticals as Municipal Solid Waste by Landfilling a Good Option? A Case Study in China. Bull. Environ. Contam. Toxicol. 2020, 105, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Abou Taleb, M.; Al Farooque, O. Towards a circular economy for sustainable development: An application of full cost accounting to municipal waste recyclables. J. Clean. Prod. 2021, 280, 124047. [Google Scholar] [CrossRef]
- Owusu-Sekyere, E. Altered urban landscape: Shedding light on conflicts in a landfill community in Ghana. Afr. J. Sci. Technol. Innov. Dev. 2022, 14, 76–85. [Google Scholar] [CrossRef]
- Owusu, G.; Nketiah-Amponsah, E.; Codjoe, S.N.A.; Afutu-Kotey, R.L. How do Ghana’s landfills affect residential property values? A case study of two sites in Accra. Urban Geogr. 2014, 35, 1140–1155. [Google Scholar] [CrossRef]
- Ofori-Boateng, C.; Lee, K.; Mensah, M. The prospects of electricity generation from municipal solid waste (MSW) in Ghana: A better waste management option. Fuel Process. Technol. 2013, 110, 94–102. [Google Scholar] [CrossRef]
- Kamaruddin, M.A.; Norashiddin, F.A.; Hanif, M.H.M.; Shadi, A.M.H.; Yusoff, M.S.; Wang, L.K.; Wang, M.H.S. Characterization and Measurement of Solid Waste. Solid Waste Eng. Manag. 2021, 1, 209–295. [Google Scholar]
- Abdul-Mumuni, A.; Musah, A.; Mohammed, I.; Insaidoo, M.; Alhassan, N.A. Asymmetric Effect of Energy Consumption and Economic Growth on Carbon Emissions in Ghana: Evidence from Nonlinear ARDL Approach. IUP J. Appl. Econ. 2022, 21, 36–54. [Google Scholar]
- Kuleape, R.; Cobbina, S.J.; Dampare, S.B.; Duwiejuah, A.B.; Amoako, E.E.; Asare, W. Assessment of the energy recovery potentials of solid waste generated in Akosombo, Ghana. Afr. J. Environ. Sci. Technol. 2014, 8, 297–305. [Google Scholar] [CrossRef]
- Kemausuor, F.; Kamp, A.; Thomsen, S.T.; Bensah, E.C.; Østergård, H. Assessment of biomass residue availability and bioenergy yields in Ghana. Resour. Conserv. Recycl. 2014, 86, 28–37. [Google Scholar] [CrossRef]
- Abiti, B.; Hartard, S.; Bradl, H.B.; Pishva, D.; Ahiakpa, J.K. Resource prospects of municipal solid wastes generatedin the Ga East Municipal Assembly of Ghana. J. Health Pollut. 2017, 7, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Barnor, B.; Ahunu, L.; Ohene Adu, R. Power Generation from Municipal Solid Waste in Ghana. 14 April 2018. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3162558 (accessed on 4 September 2023).
- Fobil, J.N.; Carboo, D.; Armah, N.A. Evaluation of municipal solid wastes (MSW) for tilization in energy production in developing countries. Int. J. Environ. Technol. Manag. 2005, 5, 76–86. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, G.; Xue, L.; Zuo, J.; Chen, T.; Vuppaladadiyam, A.; Duan, H. Anaerobic digestion based waste-to-energy technologies can halve the climate impact of China’s fast-growing food waste by 2040. J. Clean. Prod. 2020, 277, 123490. [Google Scholar] [CrossRef]
- Kabir, Z.; Khan, I. Environmental impact assessment of waste to energy projects in developing countries: General guidelines in the context of Bangladesh. Sustain. Energy Technol. Assess. 2020, 37, 100619. [Google Scholar] [CrossRef]
- Islam, K.M. Municipal solid waste to energy generation in Bangladesh: Possible scenarios to generate renewable electricity in Dhaka and Chittagong city. J. Renew. Energy 2016, 2016, 1712370. [Google Scholar] [CrossRef]
- EPA. Municipal Solid Waste. 2016. Available online: https://archive.epa.gov/epawaste/nonhaz/municipal/web/html/ (accessed on 7 September 2023).
- Schafer, M.L.; Clavier, K.A.; Townsend, T.G.; Kari, R.; Worobel, R.F. Assessment of the total content and leaching behavior of blends of incinerator bottom ash and natural aggregates in view of their utilization as road base construction material. Waste Manag. 2019, 98, 92–101. [Google Scholar] [CrossRef]
- Aso, S.N. Digestate: The coproduct of biofuel production in a circular economy, and new results for cassava peeling residue digestate. In Renewable Energy-Technologies and Applications; Books on Demand: Norderstedt, Germany, 2020. [Google Scholar]
- Duan, Z.; Kjeldsen, P.; Scheutz, C. Trace gas composition in landfill gas at Danish landfills receiving low-organic waste. Waste Manag. 2021, 122, 113–123. [Google Scholar] [CrossRef]
- Din, M.; Nabi, A.; Hussain, Z.; Khalid, R.; Iqbal, M.; Arshad, M.; Mujahid, A.; Hussain, T. Microbial fuel cells—A preferred technology to prevail energy crisis. Int. J. Energy Res. 2021, 45, 8370–8388. [Google Scholar] [CrossRef]
- Roopnarain, A.; Rama, H.; Ndaba, B.; Bello-Akinosho, M.; Bamuza-Pemu, E.; Adeleke, R. Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization. Renew. Sustain. Energy Rev. 2021, 152, 111717. [Google Scholar] [CrossRef]
- Tugov, A.N. Experience of using municipal solid waste in the energy industry (An Overview). Therm. Eng. 2015, 62, 853–861. [Google Scholar] [CrossRef]
- Beegle, J.R.; Borole, A.P. Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors. Renew. Sustain. Energy Rev. 2018, 96, 343–351. [Google Scholar] [CrossRef]
- Roy, D.; Samanta, S.; Ghosh, S. Energetic, exergetic and economic (3E) investigation of biomass gasification-based power generation system employing molten carbonate fuel cell (MCFC), indirectly heated air turbine and an organic Rankine cycle. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 112. [Google Scholar] [CrossRef]
- Ayodele, T.; Ogunjuyigbe, A.; Alao, M. Economic and environmental assessment of electricity generation using biogas from organic fraction of municipal solid waste for the city of Ibadan, Nigeria. J. Clean. Prod. 2018, 203, 718–735. [Google Scholar] [CrossRef]
- Kępys, W.; Jaszczura, K. Waste Thermal Treatment Installations in Poland. Inzynieria Miner. Pol. Miner. Eng. Soc. 2020, 1, 47–50. [Google Scholar] [CrossRef]
- Abdul–Wahab, T.T.M.A.; Takase, M.A. Biodiesel Production from Neem (Azadirachtaindica) Seed Oil. Int. J. Innov. Res. Dev. 2019, 8, 33–40. [Google Scholar]
- kwun Omang, D.I.; John, G.E.; Inah, S.A.; Bisong, J.O. Public health implication of solid waste generated by households in Bekwarra Local Government area. Afr. Health Sci. 2021, 21, 1467–1473. [Google Scholar] [CrossRef]
- Maleki-Ghelichi, E.; Sharifi, M. Prioritize and choose the best process of anaerobic digestion to produce energy from biomass using analytic hierarchy process (AHP). Geol. Ecol. Landsc. 2017, 1, 219–224. [Google Scholar] [CrossRef]
- Khadivi, M.; Sowlati, T. Biomass gasification investment: A multi-criteria decision considering uncertain conditions. Biomass Convers. Biorefinery 2022, 14, 4211–4243. [Google Scholar] [CrossRef]
- Lo, S.L.Y.; How, B.S.; Teng, S.Y.; Lam, H.L.; Lim, C.H.; Rhamdhani, M.A.; Sunarso, J. Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties. Renew. Sustain. Energy Rev. 2021, 152, 111644. [Google Scholar] [CrossRef]
- Hussain Mirjat, N.; Uqaili, M.A.; Harijan, K.; Mustafa, M.W.; Rahman, M.M.; Khan, M.W.A. Multi-criteria analysis of electricity generation scenarios for sustainable energy planning in Pakistan. Energies 2018, 11, 757. [Google Scholar] [CrossRef]
- Ahmad, S.; Tahar, R.M. Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renew. Energy 2014, 63, 458–466. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Tan, Q.; Mirjat, N.H.; Ali, S. Evaluating the strategies for sustainable energy planning in Pakistan: An integrated SWOT-AHP and Fuzzy-TOPSIS approach. J. Clean. Prod. 2019, 236, 117655. [Google Scholar] [CrossRef]
- Hazarika, R.; Saikia, A. Landfill site suitability analysis using AHP for solid waste management in the Guwahati Metropolitan Area, India. Arab. J. Geosci. 2020, 13, 1148. [Google Scholar] [CrossRef]
- Khan, D.; Samadder, S.R. A simplified multi-criteria evaluation model for landfill site ranking and selection based on AHP and GIS. J. Environ. Eng. Landsc. Manag. 2015, 23, 267–278. [Google Scholar] [CrossRef]
- Sharma, H.B.; Vanapalli, K.R.; Samal, B.; Cheela, V.S.; Dubey, B.K.; Bhattacharya, J. Circular economy approach in solid waste management system to achieve UN-SDGs: Solutions for post-COVID recovery. Sci. Total Environ. 2021, 800, 149605. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Mahinpey, N.; Aqsha, A.; Silbermann, R. Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Manag. 2016, 48, 34–47. [Google Scholar] [CrossRef]
- Singhal, A.; Gupta, A.K.; Dubey, B.; Ghangrekar, M.M. Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India. J. Air Waste Manag. Assoc. 2022, 72, 147–160. [Google Scholar] [CrossRef]
- Tan, S.T.; Hashim, H.; Lim, J.S.; Ho, W.S.; Lee, C.T.; Yan, J. Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia. Appl. Energy 2014, 136, 797–804. [Google Scholar] [CrossRef]
- Kabir, Z.; Kabir, M. Solid waste management in developing countries: Towards a circular economy. In Handbook of Solid Waste Management: Sustainability through Circular Economy; Springer: Singapore, 2021; pp. 1–34. [Google Scholar]
- Palmer, M.A.; Kramer, J.G.; Boyd, J.; Hawthorne, D. Practices for facilitating interdisciplinary synthetic research: The National Socio-Environmental Synthesis Center (SESYNC). Curr. Opin. Environ. Sustain. 2016, 19, 111–122. [Google Scholar] [CrossRef]
- Kheybari, S.; Kazemi, M.; Rezaei, J. Bioethanol facility location selection using best-worst method. Appl. Energy 2019, 242, 612–623. [Google Scholar] [CrossRef]
- Aboagye, B.; Gyamfi, S.; Ofosu, E.A.; Djordjevic, S. Status of renewable energy resources for electricity supply in Ghana. Sci. Afr. 2021, 11, e00660. [Google Scholar] [CrossRef]
- Afful-Dadzie, A.; Mallett, A.; Afful-Dadzie, E. The challenge of energy transition in the Global South: The case of electricity generation planning in Ghana. Renew. Sustain. Energy Rev. 2020, 126, 109830. [Google Scholar] [CrossRef]
- Pueyo, A. What constrains renewable energy investment in Sub-Saharan Africa? A comparison of Kenya and Ghana. World Dev. 2018, 109, 85–100. [Google Scholar] [CrossRef]
- Nyimakan, S. Renewable energy challenges and opportunities. In The Prospect of Adopting a New Policy and Legal Paradigm in Ghana; Brunel University: London, UK, 2022. [Google Scholar]
- Ackah, I.; Bobio, C.; Graham, E.; Oppong, C.K. Balancing debt with sustainability? Fiscal policy and the future of petroleum revenue management in Ghana. Energy Res. Soc. Sci. 2020, 67, 101516. [Google Scholar] [CrossRef]
- Mahama, M.; Derkyi, N.S.A.; Nwabue, C.M. Challenges of renewable energy development and deployment in Ghana: Perspectives from developers. GeoJournal 2021, 86, 1425–1439. [Google Scholar] [CrossRef]
- Asante, D.; Ampah, J.D.; Afrane, S.; Adjei-Darko, P.; Asante, B.; Fosu, E.; Dankwah, D.A.; Amoh, P.O. Prioritizing strategies to eliminate barriers to renewable energy adoption and development in Ghana: A CRITIC-fuzzy TOPSIS approach. Renew. Energy 2022, 195, 47–65. [Google Scholar] [CrossRef]
- Sasraku, F. Power Market Regulatory Structures and Electricity Security of Supply in Ghana. Ph.D. Thesis, University of Dundee, Dundee, UK, 2019. [Google Scholar]
- Essandoh, E.O.; Akolgo, G.A.; Kumi, E.N.; Atta-Darkwa, T. Review and Analysis of Ghana’s Power Sector Policies, Programmes and Reforms. J. Energy Nat. Resour. Manag. 2021, 7. [Google Scholar]
- Adobea Oduro, M.; Gyamfi, S.; Sarkodie, S.A.; Kemausuor, F. Evaluating the success of renewable energy and energy efficiency policies in Ghana: Matching the policy objectives against policy instruments and outcomes. Renewable Energy-Resources, Challenges and Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Debrah, J.K.; Teye, G.K.; Dinis, M.A.P. Barriers and challenges to waste management hindering the circular economy in Sub-Saharan Africa. Urban Sci. 2022, 6, 57. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, Y.; Xia, B.; Cui, C.; Jiang, X.; Skitmore, M. Enhancing public acceptance towards waste-to-energy incineration projects: Lessons learned from a case study in China. Sustain. Cities Soc. 2019, 48, 101582. [Google Scholar] [CrossRef]
- Gheyssens, J.; Garrett, L.; Iweins, M. Mobilizing restoration finance at the local level. Unasylva 2020, 71, 42–50. [Google Scholar]
- Roberts, D. Feed-in tariffs for renewable power and the role of auctions: The Chinese & global experience. China Econ. J. 2020, 13, 152–168. [Google Scholar]
- Henry hub, Henry Hub Natural Gas Spot Price (I:HHNGSP). 2022. Available online: https://ycharts.com/indicators/henry_hub_natural_gas_spot_price (accessed on 6 May 2022).
- Ghanaweb. Dumsor: VRA Needs $30m Monthly to Buy Crude. 7 December 2015. Available online: https://www.ghanaweb.com/GhanaHomePage/business/Dumsor-VRA-needs-30m-monthly-to-buy-crude-397355#:~:text=Pegging%20crude%20oil%20price%20at%20%2450%20per%20barrel%2C,need%20%2415%20million%20every%20month%20to%20operate%20TAPCO (accessed on 12 August 2022).
Criterion | Eligibility | Exclusion |
---|---|---|
Literature type | Journal (research/original articles) | Journals (reviews), chapters in book, conference proceedings, book series, |
Language | English | Non-English |
Timeline indexes | 2012–2022 | <2012 |
Indexes | Social Science Citation index, Art and Humanities Index, Science Citation Index | N/A |
Countries | Ghana, Africa and Global | N/A |
WtE | Parameter | Value |
---|---|---|
Biochemical potential (Anaerobic digestion) | Power generating potential (PGP) | 530 (KW per tMSW) |
Energy recovery potential (EPR) | 41.68(KWh per tMSW) | |
Biogas emission | 8.03 | |
Thermochemical potential (Gasification) | Power generating potential (PGP) | 1320(KW per tMSW) |
Energy recovery potential (EPR) | 106(KW per tMSW) |
WtE | Parameter | Value |
---|---|---|
Biochemical potential (Anaerobic digestion) | NCV | 0.218 |
K | 0.04 | |
Lo | 100 | |
ⴄ | 30% | |
Thermochemocal (Gasification) | NCV | 0.242 |
MSWx | 380 | |
ⴄ | 30% |
Author | Feedstock | Technology | Region | Energy Potential |
---|---|---|---|---|
[41] | Municipal solid waste (Kumasi) | Biogas (1 m3) | Kumasi | 0.00001 GWh |
[87] | Municipal solid waste | Incineration, landfilling | Ghana | 2 GWh |
[42] | Municipal solid waste | Gasification, plasma arc gasification, pyrolysis, anaerobic digestion | Ghana | 10.41, 4.63, 3.47, and 2.23 GWh respectively |
[90] | Municipal solid waste | WtE | Akosombo | 1.93 × 10−5 GWh |
[91] | Crop residues and animal manure | Biogas (2700 Mm3) | Ghana | 26.6 GWh |
[92] | Municipal solid waste | Biogas | Ga east | 0.00241 GWh |
[34] | Food waste | Anaerobic digestion | Kumasi | 0.00278 GWh |
[93] | Municipal solid waste | Anaerobic digestion | Ghana | 696.14 GWh/y |
[74] | Food waste | Anaerobic digestion | Accra | 80.43–300.49 GWh/y |
Author | Calorific Value |
---|---|
[34] | 14.8–16.6 MJ kg−1 |
[32] | 13.8 MJ/kg |
[94] | 14–20 MJ/kg |
[35] | 13.9–29.9 MJ/kg |
[90] | 29.9 MJ/kg |
[42] | 10.1 MJ/kg (direct measurement) and 9.32 MJ/kg (estimated) |
Policies/Strategies | Description as Regards Waste-to-Energy/Renewable Energy | Status |
---|---|---|
Ghana National Energy Policy (2010) | The policy document comprises Chapters 4, 5, and 6, which focus on the implementation of renewable energy, management of waste-to-energy systems, and the enhancement of energy efficiency. This statement underscores the necessity of enhancing support policies and engaging the private sector to promote the development of sustainable and efficient energy generation. Additionally, the policy emphasizes the importance of biofuel generation projects. Ghana has enormous potential for biomass management and waste-to-energy, particularly for the regeneration of woody biomass resources. | Existing |
Renewable Energy Act 2011, Act 832 | The ACT serves as a legal framework that governs the advancement, administration, utilisation, and sustainable provision of renewable energy sources for the purpose of producing heat and electricity, as well as addressing associated concerns in Ghana. | Existing |
Ghana Renewable Energy Policy Handbook (2022) | This resource provides a general overview of the primary policies that regulate the renewable energy sector within the nation. The report examines the renewable energy targets and plans, as well as the current policy framework, in order to provide projections of growth for the renewable energy industry in Ghana. | Existing |
Ministry of Energy | This state institution is tasked with the responsibility of developing policies pertaining to the power and petroleum industry in Ghana. | Existing |
Energy Commission Act, 1997 (Act 541) | The entity in charge of overseeing and controlling the utilisation of energy resources in Ghana, as well as coordinating all policies pertaining to them, is also responsible for regulating and granting licenses for the transmission, wholesale supply, distribution, and sale of electricity and natural gas in Ghana lies with the commission. It is also in charge of advocating for the advancement of biofuels as a viable option for transportation fuel and implementing suitable fiscal and tax measures to bolster the progress and adoption of renewable energy sources among others. | Existing |
Public Utilities and Regulatory Commission Act, 1997 (Act 538) | The Public Utilities and Regulatory Commission (PURC) was established in Ghana with the primary objective of regulating the provision of utility services within the country. | Existing |
Ghana Energy Development and Access Project (GEDAP) 2007 | The objective of this initiative is to enhance the availability of electricity in rural regions of Ghana by leveraging renewable energy sources. | Existing |
Renewable Energy Master Plan (REMP) (2019) | This policy document outlines Ghana’s objectives in the field of renewable energy, which entail augmenting the nation’s renewable energy composition from 42.5 MW in 2015 to 1363.63 MW by the year 2030. | Existing |
Energy Sector Strategy and Development Plan (ESSDP) (2010) | The primary objective is to facilitate the advancement of renewable energy and energy efficiency practices in Ghana. | N/A |
Sustainable energy for all (Se4all), 2016 | Se4all is an initiative to increase access to sustainable energy in Ghana and promote energy efficiency especially in rural areas in Ghana. | Existing |
National Electrification Scheme (NES), 1989 | The NES has the overall objective of providing universal access to electricity in Ghana over a 30-year period | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahiru, A.-W.; Cobbina, S.J.; Asare, W.; Takal, S.U. Unlocking Energy from Waste: A Comprehensive Analysis of Municipal Solid Waste Recovery Potential in Ghana. World 2024, 5, 192-218. https://doi.org/10.3390/world5020011
Tahiru A-W, Cobbina SJ, Asare W, Takal SU. Unlocking Energy from Waste: A Comprehensive Analysis of Municipal Solid Waste Recovery Potential in Ghana. World. 2024; 5(2):192-218. https://doi.org/10.3390/world5020011
Chicago/Turabian StyleTahiru, Abdul-Wahab, Samuel Jerry Cobbina, Wilhemina Asare, and Silas Uwumborge Takal. 2024. "Unlocking Energy from Waste: A Comprehensive Analysis of Municipal Solid Waste Recovery Potential in Ghana" World 5, no. 2: 192-218. https://doi.org/10.3390/world5020011
APA StyleTahiru, A. -W., Cobbina, S. J., Asare, W., & Takal, S. U. (2024). Unlocking Energy from Waste: A Comprehensive Analysis of Municipal Solid Waste Recovery Potential in Ghana. World, 5(2), 192-218. https://doi.org/10.3390/world5020011