Characterizing Management Practices in High- and Average-Performing Smallholder Dairy Farms under Contrasting Environmental Stresses in Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Research Design
2.3. Data Collection and Processing
2.4. Statistical Analysis
3. Results
3.1. Housing and Breeding Management Practices
3.2. Feeding and Health Management Practices
4. Discussion
4.1. Breeding Practices
4.2. Housing Management
4.3. Feeding Practices
4.4. Animal Health Management Practices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van der Linden, A.; Oosting, S.J.; van de Ven, G.W.J.; de Boer, I.J.M.; van Ittersum, M.K. A framework for quantitative analysis of livestock systems using theoretical concepts of production ecology. Agric. Syst. 2015, 139, 100–109. [Google Scholar] [CrossRef]
- VanLeeuwen, J.A.; Mellish, T.; Walton, C.; Kaniaru, A.; Gitau, R.; Mellish, K.; Maina, B.; Wichtel, J. Management, productivity and livelihood effects on Kenyan smallholder dairy farms from interventions addressing animal health and nutrition and milk quality. Trop. Anim. Health Prod. 2012, 44, 231–238. [Google Scholar] [CrossRef]
- ILRI. African Dairy Genetic Gains: Building the Business Case; International Livestock Research Institute: Nairobi, Kenya, 2019; p. 32. [Google Scholar]
- Gojam, Y.; Tadesse, M.; Efffa, K.; Hunde, D. Performance of crossbred dairy cows suitable for smallholder production systems at Holetta Agricultural Research Centre. Ethiop. J. Agric. Sci. 2017, 27, 121–131. [Google Scholar]
- Mbuthia, J.M.; Mayer, M.; Reinsch, N. Modeling heat stress effects on dairy cattle milk production in a tropical environment using test-day records and random regression models. Animal 2021, 15, 100222. [Google Scholar] [CrossRef] [PubMed]
- Mekoya, A.; Oosting, S.J.; Fernández Rivera, S.; Zijpp, A.J. van der. Farmers’ perceptions about exotic multipurpose fodder trees and constraints to their adoption. Agrofor. Syst. 2008, 73, 141–153. [Google Scholar] [CrossRef]
- Gellynck, X.; Kühne, B. Horizontal and Vertical Networks for Innovation in the Traditional Food Sector. Int. J. Food Syst. Dyn. 2010, 1, 123–132. [Google Scholar] [CrossRef]
- Cadilhon, J.-J.; Pham, N.D.; Maass, B.L. The Tanga Dairy Platform: Fostering Innovations for more Efficient Dairy Chain Coordination in Tanzania. Int. J. Food Syst. Dyn. 2016, 7, 81–91. [Google Scholar] [CrossRef]
- Wishik, S.M.; Vynckt, S. The use of nutritional “positive deviants” to identify approaches for modification of dietary practices. Am. J. Public Health 1976, 66, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Herington, M.J.; Fliert, E. van de. Positive Deviance in Theory and Practice: A Conceptual Review. Deviant Behav. 2018, 39, 664–678. [Google Scholar] [CrossRef]
- Albanna, B.H.; Heeks, R. Positive deviance, big data, and development: A systematic literature review. Electron. J. Inf. Syst. Dev. Ctries. 2019, 85, e12063. [Google Scholar] [CrossRef] [Green Version]
- Adelhart Toorop, R.; Ceccarelli, V.; Bijarniya, D.; Jat, M.L.; Jat, R.K.; Lopez-Ridaura, S.; Groot, J.C.J. Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India. Agric. Syst. 2020, 185, 102942. [Google Scholar] [CrossRef]
- Albanna, B.H.; Heeks, R.; Pawelke, A.; Boy, J.; Handl, J.; Gluecker, A. Data-powered positive deviance: Combining traditional and non-traditional data to identify and characterise development-related outperformers. Dev. Eng. 2022, 7, 100090. [Google Scholar] [CrossRef]
- Savikurki, A. Positive Deviance in Smallholder Crop-Livestock Farming Systems in Northern Ghana. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2013. [Google Scholar]
- Abdullahi, H.; Albanna, B.; Barvels, E. Rangelands Defying the Odds: A Data Powered Positive Deviance Inquiry in Somalia. Medium. 12 April 2021. Available online: https://dppd.medium.com/rangelands-defying-the-odds-a-data-powered-positive-deviance-inquiry-in-somalia-90772de392dd (accessed on 13 August 2022).
- Grijalva, A.M.; Jiménez, P.; Albanna, B.; Boy, J. Deforestation, Cows, and Data: Data Powered Positive Deviance Pilot in Ecuador’s Amazon. Medium. 9 June 2021. Available online: https://dppd.medium.com/deforestation-cows-and-data-data-powered-positive-deviance-pilot-in-ecuador-s-amazon-648aa0de121c (accessed on 13 August 2022).
- de Adelhart Toorop, R.; Gosselink, K. Analysis of Positive Deviants among Organic Dairy Farmers in The Netherlands; Wageningen University & Research: Wageningen, The Netherlands, 2013; Available online: https://dl.dropboxusercontent.com/u/17758665/Final_draft_thesis_Roos.pdf (accessed on 17 May 2019).
- Ulukan, D.; Grillot, M.; Benoit, M.; Bernes, G.; Dumont, B.; Magne, M.-A.; Amaral Monteiro, L.; Parsons, D.; Veysset, P.; Ryschawy, J.; et al. Positive deviant strategies implemented by organic multi-species livestock farms in Europe. Agric. Syst. 2022, 201, 103453. [Google Scholar] [CrossRef]
- Shija, D.S.; Mwai, O.A.; Migwi, P.K.; Komwihangilo, D.M.; Bebe, B.O. Identifying positive deviant farms using Pareto-Optimality ranking technique to assess productivity and livelihood benefits in smallholder dairy farming under contrasting stressful environments in Tanzania. World 2022, 3, 639–656. [Google Scholar] [CrossRef]
- Tempelman, R.J. Invited review: Assessing experimental designs for research conducted on commercial dairies. J. Dairy Sci. 2009, 92, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzywinski, M.; Altman, N.; Blainey, P. Nested designs. Nat. Methods 2014, 11, 977–978. [Google Scholar] [CrossRef]
- Field, A.P. Discovering Statistics Using SPSS, 3rd ed.; SAGE Publications: Los Angeles, CA, USA, 2009; ISBN 978-1-84787-906-6. [Google Scholar]
- SAS Institute Inc. SAS/ACCESS® 9.4 Interface to ADABAS: Reference; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Gustafson, C.R.; VanWormer, E.; Kazwala, R.; Makweta, A.; Paul, G.; Smith, W.; Mazet, J.A. Educating pastoralists and extension officers on diverse livestock diseases in a changing environment in Tanzania. Pastoralism 2015, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Polsky, L.; von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [Green Version]
- Kibiego, M.B.; Lagat, J.K.; Bebe, B.O. Assessing the Economic Efficiency of Dairy Production Systems in Uasin Gishu County, Kenya. J. Econ. Sustain. Dev. 2015, 6, 146–153. [Google Scholar]
- Kebebe, E.G.; Oosting, S.J.; Baltenweck, I.; Duncan, A.J. Characterisation of adopters and non-adopters of dairy technologies in Ethiopia and Kenya. Trop. Anim. Health Prod. 2017, 49, 681–690. [Google Scholar] [CrossRef]
- Bebe, B.O.; Udo, H.M.J.; Rowlands, G.J.; Thorpe, W. Smallholder dairy systems in the Kenya highlands: Cattle population dynamics under increasing intensification. Livest. Prod. Sci. 2003, 82, 211–221. [Google Scholar] [CrossRef]
- Vercillo, S.; Kuuire, V.Z.; Armah, F.A.; Luginaah, I. Does the New Alliance for Food Security and Nutrition impose biotechnology on smallholder farmers in Africa? Glob. Bioeth. 2015, 26, 1–13. [Google Scholar] [CrossRef]
- Niyas, P.A.; Kunnath, C.; Shaji, S.; Sejian, V.; Madiajagan, B.; Bhatta, R.; Rao, G.; Kurien, K.; Girish, V. Adaptation of Livestock to Environmental Challenges. J. Vet. Sci. Med. Diagn. 2015, 4, 2. [Google Scholar] [CrossRef]
- Marshall, K.; Salmon, G.R.; Tebug, S.; Juga, J.; MacLeod, M.; Poole, J.; Baltenweck, I.; Missohou, A. Net benefits of smallholder dairy cattle farms in Senegal can be significantly increased through the use of better dairy cattle breeds and improved management practices. J. Dairy Sci. 2020, 103, 8197–8217. [Google Scholar] [CrossRef]
- Mrode, R.; Ojango, J.; Ekine-Dzivenu, C.; Aliloo, H.; Gibson, J.; Okeyo, M.A. Genomic prediction of crossbred dairy cattle in Tanzania: A route to productivity gains in smallholder dairy systems. J. Dairy Sci. 2021, 104, 11779–11789. [Google Scholar] [CrossRef] [PubMed]
- Solidaridad Focus on Farmers Essential to Grow the Tanzanian Dairy Sector. Available online: https://www.solidaridadnetwork.org/news/focus-on-farmers-essential-to-grow-the-tanzanian-dairy-sector/ (accessed on 14 August 2022).
- Ojango, J.M.K.; Mrode, R.; Rege, J.E.O.; Mujibi, D.; Strucken, E.M.; Gibson, J.; Mwai, O. Genetic evaluation of test-day milk yields from smallholder dairy production systems in Kenya using genomic relationships. J. Dairy Sci. 2019, 102, 5266–5278. [Google Scholar] [CrossRef] [Green Version]
- Bewley, J.M.; Robertson, L.M.; Eckelkamp, E.A. A 100-Year Review: Lactating dairy cattle housing management. J. Dairy Sci. 2017, 100, 10418–10431. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Doyle, R. Cow Talk: Understanding Dairy Cow Behaviour to Improve Their Welfare on Asian Farms; CSIRO Publishing: Clayton South, VIC, Australia, 2015; ISBN 978-1-4863-0161-4. [Google Scholar]
- Bang, N.N.; Gaughan, J.B.; Hayes, B.J.; Lyons, R.E.; Chanh, N.V.; Trach, N.X.; Khang, D.N.; McNeill, D.M. Characteristics of Cowsheds in Vietnamese Smallholder Dairy Farms and Their Associations with Microclimate—A Preliminary Study. Animals 2021, 11, 351. [Google Scholar] [CrossRef] [PubMed]
- Galama, P.J.; Ouweltjes, W.; Endres, M.I.; Sprecher, J.R.; Leso, L.; Kuipers, A.; Klopčič, M. Symposium review: Future of housing for dairy cattle. J. Dairy Sci. 2020, 103, 5759–5772. [Google Scholar] [CrossRef] [PubMed]
- Beaver, A.; Ritter, C.; von Keyserlingk, M.A.G. The Dairy Cattle Housing Dilemma: Natural Behavior Versus Animal Care. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.V. Heat Stress Interaction with Shade and Cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [CrossRef]
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F.; Jones, G.A.; Mitloehner, F.M.; Ruegg, P.L.; Sheldon, I.M.; et al. Review: Perspective on high-performing dairy cows and herds. Animal 2021, 15, 100298. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef]
- M’Hamdi, N.; Darej, C.; Attia, K.; El Akram Znaidi, I.; Khattab, R.; Djelailia, H.; Bouraoui, R.; Taboubi, R.; Marzouki, L.; Ayadi, M. Modelling THI effects on milk production and lactation curve parameters of Holstein dairy cows. J. Therm. Biol. 2021, 99, 102917. [Google Scholar] [CrossRef]
- Slaghuis, B. Source and significance of contaminants on different levels of raw milk production.; International Dairy Federation, 1996. In Proceedings of the Symposium on Bacteriological Quality of Raw Milk, Wolfpassing, Austria, 13–15 March 1996; Available online: https://scholar.google.com/scholar_lookup?title=Source+and+significance+of+contaminants+on+different+levels+of+raw+milk+production&author=Slaghuis%2C+B.+%28Research+Station+for+Cattle%2C+Sheep+and+Horse+Husbandry%2C+Lelystad+%28Netherlands%29%29&publication_year=1996 (accessed on 26 May 2022).
- Gillah, K.A.; Kifaro, G.C.; Madsen, J. Effects of management practices on yield and quality of milk from smallholder dairy units in urban and peri-urban Morogoro, Tanzania. Trop. Anim. Health Prod. 2014, 46, 1177–1183. [Google Scholar] [CrossRef]
- Chagwiza, G. Cost-Effective Forage and Browse Legume Feed for Dairy Production: An Optimisation Approach Using Jaya Optimisation Algorithm. Adv. Agric. 2022, 2022, e5838723. [Google Scholar] [CrossRef]
- Brett, C.I. A New Way to Boost Smallholder Dairy Productivity in Tanzania. worldbank.org/voices. 2019. Available online: https://blogs.worldbank.org/voices/new-way-boost-smallholder-dairy-productivity-tanzania (accessed on 1 August 2022).
- Collier, P.; Dercon, S. African Agriculture in 50 Years: Smallholders in a Rapidly Changing World? World Dev. 2014, 63, 92–101. [Google Scholar] [CrossRef]
- Marshall, K.; Gibson, J.P.; Mwai, O.; Mwacharo, J.M.; Haile, A.; Getachew, T.; Mrode, R.; Kemp, S.J. Livestock genomics for developing countries—African examples in practice. Front. Genet. 2019, 10, 297. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, C. Veterinary Services: Improving Accessibility for Smallholder Farmers. GALVmed. 2020. Available online: https://www.galvmed.org/veterinary-services-improving-accessibility-for-smallholder-farmers/ (accessed on 1 August 2022).
- Campbell, Z.; Coleman, P.; Guest, A.; Kushwaha, P.; Ramuthivheli, T.; Osebe, T.; Perry, B.; Salt, J. Prioritizing smallholder animal health needs in East Africa, West Africa, and South Asia using three approaches: Literature review, expert workshops, and practitioner surveys. Prev. Vet. Med. 2021, 189, 105279. [Google Scholar] [CrossRef]
- Heffernan, C. Panzootics and the poors: Devising a global livestock disease prioritisation framework for poverty alleviation. Rev. Sci. Tech. OIE 2009, 28, 897–907. [Google Scholar] [CrossRef] [Green Version]
- Sumner, C.L.; von Keyserlingk, M.A.G.; Weary, D.M. Perspectives of farmers and veterinarians concerning dairy cattle welfare. Anim. Front. 2018, 8, 8–13. [Google Scholar] [CrossRef]
- Thapa Shrestha, U.; Adhikari, N.; Kafle, S.; Shrestha, N.; Banjara, M.R.; Steneroden, K.; Bowen, R.; Rijal, K.R.; Adhikari, B.; Ghimire, P. Effect of deworming on milk production in dairy cattle and buffaloes infected with gastrointestinal parasites in the Kavrepalanchowk district of central Nepal. Vet. Rec. Open 2020, 7, e000380. [Google Scholar] [CrossRef]
- Wairimu, E.; Mburu, J.; Ndambi, A.; Gachuiri, C. Factors affecting adoption of technical, organisational and institutional dairy innovations in selected milksheds in Kenya. Agrekon 2022, 61, 324–338. [Google Scholar] [CrossRef]
- Perry, B.D.; Randolf, T.F.; McDermott, J.J.; Sones, K.R.; Thornton, P.K. Investing in Animal Health Research to Alleviate Poverty; International Livestock Research Institute: Nairobi, Kenya, 2002; ISBN 92-9146-108-3. [Google Scholar]
- Dezdar, S. Green information technology adoption: Influencing factors and extension of theory of planned behavior. Soc. Responsib. J. 2017, 13, 292–306. [Google Scholar] [CrossRef]
- Deng, J.; Sun, P.; Zhao, F.; Han, X.; Yang, G.; Feng, Y. Analysis of the ecological conservation behavior of farmers in payment for ecosystem service programs in eco-environmentally fragile areas using social psychology models. Sci. Total Environ. 2016, 550, 382–390. [Google Scholar] [CrossRef] [PubMed]
Factor | Level | Land Size (Acres) | Number of Animals | Stall Floor Spacing (m2/Cow) |
---|---|---|---|---|
Environment | ||||
Low-stress | 4.85 ± 0.78 | 5.89 ± 0.68 | 7.80 ± 0.82 | |
High-stress | 7.92 ± 0.95 | 4.33 ± 0.82 | 9.68 ± 0.99 | |
Mean difference | 3.07 * | 1.55 NS | 1.88 NS | |
Farm (Environment) | ||||
Low-stress | ||||
Positive deviants | 7.08 ± 1.52 | 7.33 ± 1.32 | 7.54 ± 1.59 | |
Typical | 2.61 ± 0.37 | 4.44 ± 0.32 | 8.06 ± 0.38 | |
Mean difference | 4.47 ** | 2.89 * | 0.53 NS | |
High-stress | ||||
Positive deviants | 11.83 ± 1.86 | 4.17 ± 1.61 | 13.19 ± 1.94 | |
Typical | 4.00 ± 0.35 | 4.50 ± 0.31 | 6.17 ± 0.37 | |
Mean difference | 7.83 *** | 0.34 NS | 7.01 *** | |
Farm | ||||
Positive deviants | 9.46 ± 1.20 | 5.75 ± 1.04 | 10.36 ± 1.25 | |
Typical | 3.31 ± 0.25 | 4.47 ± 0.22 | 7.12 ± 0.27 | |
Mean difference | 6.15 *** | 1.28 NS | 3.24 * |
Factor | Positive Deviant Farms (n = 15) | Typical Farms (n = 322) | Chi-Square Test |
---|---|---|---|
Housing type (%) | |||
Permanent house | 76.9 | 47.8 | * |
Semi-permanent house | 23.1 | 52.2 | |
Housing materials (%) | |||
Wood | 100.0 | 87.9 | NS |
Stone/brick wall | 80.0 | 60.1 | NS |
Grass/makuti roofing | 0.0 | 25.5 | * |
Corrugated iron sheet roofing | 100.0 | 74.1 | * |
Factor | Level | Holstein-Friesian | Ayrshire | Jersey | Chi-Square Tests |
---|---|---|---|---|---|
Environment | |||||
Low-stress (n = 1059) | 68.5 | 26.0 | 5.6 | *** | |
High-stress (n = 1819) | 81.3 | 16.1 | 2.6 | ||
Farm (Environment) | |||||
Low-stress | |||||
Positive deviants (n = 51) | 60.8 | 37.3 | 2.0 | NS | |
Typical (n = 1008) | 68.8 | 25.4 | 5.8 | ||
High-stress | |||||
Positive deviants (n = 59) | 81.4 | 13.6 | 5.1 | NS | |
Typical (n = 1760) | 81.3 | 16.1 | 2.6 | ||
Farm | |||||
Positive deviants (n = 110) | 71.8 | 24.5 | 3.6 | NS | |
Typical (n = 2768) | 76.8 | 19.5 | 3.7 |
Factor | Level | Upgrading Level (% of Exotic Blood Levels) | Chi-Square Tests | |||
---|---|---|---|---|---|---|
25% | 50% | >75% | Purebred | |||
Environment | ||||||
Low-stress (n = 973) | 7.0 | 84.3 | 6.7 | 2.0 | *** | |
High-stress (n = 1068) | 5.1 | 32.6 | 61.6 | 0.7 | ||
Farm (Environment) | ||||||
Low-stress | ||||||
Positive deviants (n = 42) | 4.8 | 81.0 | 11.8 | 2.4 | NS | |
Typical (n = 931) | 7.1 | 84.4 | 6.4 | 2.1 | ||
High-stress | ||||||
Positive deviants (n = 50) | - | 24.0 | 72.0 | 4.0 | ** | |
Typical (n = 1018) | 5.3 | 33.0 | 61.1 | 0.6 | ||
Farm | ||||||
Positive deviants (n = 92) | 2.2 | 50.0 | 44.6 | 3.2 | * | |
Typical (n = 1949) | 6.2 | 57.6 | 35.0 | 1.3 |
Factor | Level | Fodder | Concentrates | Crop Residues |
---|---|---|---|---|
Environment | ||||
Low-stress (n = 164) | 0.5 ± 0.2 | 0.2 ± 0.04 | 0.3 ± 0.2 | |
High-stress (n = 173) | 0.4 ± 0.08 | 0.3 ± 0.03 | 0.2 ± 0.1 | |
Mean difference | 0.01 ** | 0.1 NS | 0.01 ** | |
Farm (Environment) | ||||
Low-stress | ||||
Positive deviants (n = 9) | 0.5 ± 0.1 | 0.3 ± 0.01 | 0.3 ± 0.1 | |
Typical (n = 155) | 0.4 ± 0.2 | 0.2 ± 0.04 | 0.3 ± 0.2 | |
Mean difference | 0.1 NS | 0.1 NS | 0.0 NS | |
High-stress | ||||
Positive deviants (n = 6) | 0.5 ± 0.01 | 0.3 ± 0.01 | 0.3 ± 0.01 | |
Typical (n = 167) | 0.4 ± 0.1 | 0.3 ± 0.03 | 0.2 ± 0.01 | |
Mean difference | 0.1 NS | 0.0 NS | 0.1 NS | |
Farm | ||||
Positive deviants (n = 15) | 0.5 ± 0.1 | 0.3 ± 0.01 | 0.3 ± 0.1 | |
Typical (n = 322) | 0.5 ± 0.2 | 0.3 ± 0.01 | 0.3 ± 0.1 | |
Mean difference | 0.0 NS | 0.0 NS | 0.0 NS |
Factor | Level | Fellow Farmers | Professional Animal Health Service Providers | Chi-Square Tests |
---|---|---|---|---|
Production environment | ||||
Low-stress (n = 221) | 33.0 | 67.0 | *** | |
High-stress (n = 297) | 59.3 | 40.7 | ||
Farm (Environment) | ||||
Low-stress | ||||
Positive deviants (n = 12) | 25.0 | 75.0 | NS | |
Typical (n = 209) | 33.5 | 66.5 | ||
High-stress | ||||
Positive deviants (n = 11) | 54.5 | 45.5 | NS | |
Typical (n = 286) | 59.4 | 40.6 | ||
Farm | ||||
Positive deviants (n = 23) | 39.1 | 60.9 | NS | |
Typical (n = 495) | 48.5 | 51.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shija, D.S.; Mwai, O.A.; Migwi, P.K.; Mrode, R.; Bebe, B.O. Characterizing Management Practices in High- and Average-Performing Smallholder Dairy Farms under Contrasting Environmental Stresses in Tanzania. World 2022, 3, 821-839. https://doi.org/10.3390/world3040046
Shija DS, Mwai OA, Migwi PK, Mrode R, Bebe BO. Characterizing Management Practices in High- and Average-Performing Smallholder Dairy Farms under Contrasting Environmental Stresses in Tanzania. World. 2022; 3(4):821-839. https://doi.org/10.3390/world3040046
Chicago/Turabian StyleShija, Dismas Said, Okeyo A. Mwai, Perminus K. Migwi, Raphael Mrode, and Bockline Omedo Bebe. 2022. "Characterizing Management Practices in High- and Average-Performing Smallholder Dairy Farms under Contrasting Environmental Stresses in Tanzania" World 3, no. 4: 821-839. https://doi.org/10.3390/world3040046
APA StyleShija, D. S., Mwai, O. A., Migwi, P. K., Mrode, R., & Bebe, B. O. (2022). Characterizing Management Practices in High- and Average-Performing Smallholder Dairy Farms under Contrasting Environmental Stresses in Tanzania. World, 3(4), 821-839. https://doi.org/10.3390/world3040046