Recent Advances in the Synthesis of 4H-Benzo[d][1,3]oxathiin-4-ones and 4H-Benzo[d][1,3]dioxin-4-ones
Abstract
1. Introduction
2. Synthesis of 4H-Benzo[d][1,3]oxathiin-4-ones
2.1. Transition-Metal-Free Strategies for 4H-Benzo[d][1,3]oxathiin-4-ones
2.2. Electrochemical Strategies for 4H-Benzo[d][1,3]oxathiin-4-ones
2.3. Skeletal Editing Strategies for 4H-Benzo[d][1,3]oxathiin-4-ones
2.4. Transition-Metal-Catalyzed/Mediated Strategies for 4H-Benzo[d][1,3]oxathiin-4-ones
3. Synthesis of 4H-Benzo[d][1,3]dioxin-4-ones
3.1. Transition-Metal-Free Strategies for 4H-Benzo[d][1,3]dioxin-4-ones
3.2. Transition-Metal-Catalyzed/Mediated Strategies for 4H-Benzo[d][1,3]dioxin-4-ones
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaur, B.; Singh, G.; Sharma, V.; Singh, I. Sulphur containing heterocyclic compounds as anticancer agents. Anti-Cancer Agent. Med. 2023, 23, 869–881. [Google Scholar]
- Obaid, R.J.; Mughal, E.U.; Naeem, N.; Al-Rooqi, M.M.; Sadiq, A.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem. 2022, 120, 250–259. [Google Scholar] [CrossRef]
- Hemming, K. Heterocyclic chemistry. Annu. Rep. Prog. Chem. Sect. B Org. Chem. 2011, 107, 118–137. [Google Scholar] [CrossRef]
- Senning, A.; Lawesson, S.O. α-Substituted Sulfides. IX. The formation of the 4-thiaisochroman-1-one system. Acta Chem. Scand. 1962, 16, 1175–1182. [Google Scholar] [CrossRef]
- Rheinheimer, J.; Vogelbacher, U.J.; Baumann, E.; Koenig, H.; Gerber, M.; Westphalen, K.O.; Walter, H. Substituted 1,3-Benzadioxane-4-ones and 1,3-Benzathioxane-4-ones, Their Preparation and Their Conversion to Crop Protection Agents. U.S. Patent 5,569,640, 29 October 1996. [Google Scholar]
- Pain, D.L.; Peart, B.J.; Wooldridge, K.R.H. Isothiazoles and their benzo derivatives. In Comprehensive Heterocyclic Chemistry, 1st ed.; Katritzky, A.R., Rees, C.W., Eds.; Pergamon Press: Oxford, UK, 1984; Volume 6, pp. 131–175. [Google Scholar]
- Lin, H.; Annamalai, T.; Bansod, P.; Tse-Dinh, Y.C.; Sun, D. Synthesis and biological evaluation of novel 7-azaindole derivatives as topoisomerase inhibitors. Med. Chem. Commun. 2013, 4, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.; Husain, A.; Akhter, N.; Khan, M.S.Y. Synthesis, antiinflammatory and antimicrobial activity of some new 1-(3-phenyl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)-ethanone derivatives. Indian J. Pharm. Sci. 2011, 73, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Soltani, O.; De Brabander, J.K. Synthesis of functionalized salicylate esters and amides by photochemical acylation. Angew. Chem. Int. Ed. 2005, 44, 1696–1699. [Google Scholar] [CrossRef]
- Feng, J.; Peng, S.; Cui, P.; Chen, H.; Li, X. Microwave-assisted synthesis and antibacterial study of 2-aryl-1,3-benzoxathin-4-ones. J. Hebei Univ. 2016, 36, 396–401. [Google Scholar]
- Nason, H.K.; Mowry, D.T. 2-Methyl-4-oxobenzoxathian. US2496741, 7 February 1950. [Google Scholar]
- Yamato, M.; Hashigaki, K.; Honda, E.; Sato, K.; Koyama, T. Chemical structure and sweet taste of isocoumarin and related compounds. Chem. Pharm. Bull. 1977, 25, 695–699. [Google Scholar] [CrossRef]
- Chung, I.M.; Seo, S.H.; Kang, E.Y.; Park, W.H.; Park, S.D.; Moon, H.I. Antiplasmodial activity of isolated compounds from Carpesium divaricatum. Phytother. Res. 2010, 24, 451–453. [Google Scholar] [CrossRef]
- Strobel, H.; Nemecek, C.; Lesuisse, D.; Ruf, S.; Guessregen, S.; Lebrun, A.; Ritter, K.; Malleron, J.L. Substituted Cyclic Urea Derivatives, Preparation and Pharmaceutical Use Thereof as Kinase Inhibitors for Treating Cancer and Other Diseases. EP1621539 A1, 1 February 2006. [Google Scholar]
- Attardo, G.; Zacharie, B.; Rej, R.; Lavallee, J.F.; Vaillancourt, L.; Denis, R.; Levesque, S. Dioxolane Analogs for Improved Inter-cellular Delivery. US2003/0013660 A1, 16 January 2003. [Google Scholar]
- Yang, K.; Li, Q.; Li, Z.; Sun, X. Transition-metal-free C–S bond cleavage and transformation of organosulfur compounds. Chem. Commun. 2023, 59, 5343–5364. [Google Scholar] [CrossRef]
- Tang, L.; Hu, Q.; Yang, K.; Elsaid, M.; Liu, C.; Ge, H. Recent advances in direct α-C(sp3)–H bond functionalization of thioethers. Green Synth. Catal. 2022, 3, 203–211. [Google Scholar] [CrossRef]
- Tamatam, R.; Shin, D. Recent advances in the transition-metal-free synthesis of quinazolines. Molecules 2023, 28, 3227. [Google Scholar] [CrossRef]
- Chen, J.Y.; Huang, J.; Sun, K.; He, W.M. Recent advances in transition-metal-free trifluoromethylation with Togni’s reagents. Org. Chem. Front. 2022, 9, 1152–1164. [Google Scholar] [CrossRef]
- Dai, S.; Yang, K.; Luo, Y.; Xu, Z.; Li, Z.; Li, Z.Y.; Li, B.; Sun, X. Metal-free and Selectfluor-mediated diverse transformations of 2-alkylthiobenzamides to access 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles. Org. Chem. Front. 2022, 9, 4016–4022. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Ma, Z.; Tang, L.; Yin, Y.; Zhang, H.; Li, Z.; Sun, X. Metal-free C−S bond cleavage to access N-substituted acrylamide and β-aminopropanamide. Eur. J. Org. Chem. 2019, 2019, 5812–5814. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, H.; Niu, B.; Tang, T.; Ge, H. Benzisothiazol-3-ones through a metal-free intramolecular N–S bond formation. Eur. J. Org. Chem. 2018, 2018, 5520–5523. [Google Scholar] [CrossRef]
- Nishina, Y.; Miyata, J. Hydrothiolation and intramolecular cyclization sequence for the synthesis of 1,3-oxathiine frameworks. Synthesis 2012, 44, 2607–2613. [Google Scholar] [CrossRef]
- Wang, H.H.; Shi, T.; Gao, W.W.; Zhang, H.H.; Wang, Y.Q.; Li, J.F.; Hou, Y.S.; Chen, J.H.; Peng, X.; Wang, Z. Double 1,4-addition of (thio)salicylamides/thiosalicylic acids with propiolate derivatives: A direct, general synthesis of diverse heterocyclic scaffolds. Org. Biomol. Chem. 2017, 15, 8013–8017. [Google Scholar] [CrossRef]
- Muthusamy, S.; Malarvizhi, M.; Suresh, E. Catalyst-free synthesis of 3,1-benzoxathiin-4-ones/1,3-benzodioxin-4-ones. Org. Biomol. Chem. 2021, 19, 1508–1513. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Song, M.; Dai, S.; Li, Z.Y.; Sun, X. Metal-free direct C(sp3)−H functionalization of 2-alkylthiobenzoic acid to access 1,3-benzooxathiin-4-one. Chin. Chem. Lett. 2021, 32, 146–149. [Google Scholar] [CrossRef]
- Yang, K.; Song, M.; Ali, A.; Mudassir, S.; Ge, H. Recent advances in the application of Selectfluor as a “fluorine-free” functional reagent in organic synthesis. Chem. Asian J. 2020, 15, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Aguilar Troyano, F.J.; Merkens, K.; Gomez-Suarez, A. Selectfluor® radical dication (TEDA2+.)—A versatile species in modern synthetic organic chemistry. Asian J. Org. Chem. 2020, 9, 992–1007. [Google Scholar] [CrossRef]
- Nyffeler, P.T.; Duron, S.G.; Burkart, M.D.; Vincent, S.P.; Wong, C.H. Selectfluor: Mechanistic insight and applications. Angew. Chem. Int. Ed. 2005, 44, 192–212. [Google Scholar] [CrossRef]
- Manna, K.; Begam, H.M.; Jana, R. Transition-metal-free dehydrogenative cyclization via α-Csp3–H activation of ethers and thioethers. Synthesis 2023, 55, 1543–1552. [Google Scholar]
- Yuan, D.; He, Y.; Sun, X.; Li, Z.; Li, B.; Yang, K. Recent advances in the application of Selectfluor as a versatile reactant in organic photo- and electrochemical synthesis. ChemistrySelect 2025, 10, e202405859. [Google Scholar] [CrossRef]
- Tian, X.; Liu, Y.; Yakubov, S.; Schutte, J.; Chiba, S.; Barham, J.P. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem. Soc. Rev. 2024, 53, 263–316. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Xu, H.C. Electrochemical generation of nitrogen-centered radicals for organic synthesis. Green Synth. Catal. 2021, 2, 165–178. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.Y.; Liao, H.R.; Shu, X.R.; He, W.M. Electrochemical transient iodination and coupling for selenylated 4-anilinocoumarin synthesis. Green Synth. Catal. 2021, 2, 233–236. [Google Scholar] [CrossRef]
- Yuan, Y.; Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc. Chem. Res. 2019, 52, 3309–3324. [Google Scholar] [CrossRef]
- Yang, D.; Guan, Z.; Peng, Y.; Zhu, S.; Wang, P.; Huang, Z.; Alhumade, H.; Gu, D.; Yi, H.; Lei, A. Electrochemical oxidative difunctionalization of diazo compounds with two different nucleophiles. Nat. Commun. 2023, 14, 1476. [Google Scholar] [CrossRef]
- Jurczyk, J.; Woo, J.; Kim, S.F.; Dherange, B.D.; Sarpong, R.; Levin, M.D. Single-atom logic for heterocycle editing. Nat. Synth. 2022, 1, 352–364. [Google Scholar] [CrossRef]
- Liu, Z.; Sivaguru, P.; Ning, Y.; Wu, Y.; Bi, X. Skeletal editing of (hetero) arenes using carbenes. Chem. Eur. J. 2023, 29, e202301227. [Google Scholar] [CrossRef]
- Yang, K.; Li, Q.; Luo, Y.; Yuan, D.; Qi, C.; Li, Z.; Li, B.; Sun, X. Transition-metal-free skeletal editing of benzoisothiazol-3-ones to 2,3-dihydrobenzothiazin-4-ones via single-carbon insertion. Org. Chem. Front. 2025, 12, 478–484. [Google Scholar] [CrossRef]
- Lv, W.; Kong, X.; Qing, Y.; Zheng, J.; Yin, Y.; Zhou, Y.; Wang, D. Skeletal editing of benzodithiol-3-ones for the assembly of benzo[d][1,3]oxathiin-4-ones. Org. Chem. Front. 2024, 11, 4979–4985. [Google Scholar] [CrossRef]
- Zhang, S.; Zong, Y.; Qian, Y.; Zhang, J.; Chen, G.Q.; Zhang, X. Highly efficient palladacycle-catalyzed carboxylation of benzyl alcohols. Green Synth. Catal. 2025, 6, 119–122. [Google Scholar] [CrossRef]
- Yuan, D.; Xu, Z.; Zhou, Y.; Herington, F.; Liu, C.; Yang, K.; Ge, H. Palladium-catalyzed cascade reactions for synthesis of heterocycles initiated by C(sp3)–H functionalization. Catalysts 2025, 15, 72. [Google Scholar] [CrossRef]
- Feng, X.; Wang, H.; Li, Z.; Tang, L.; Sun, X.; Yang, K. Transition-metal-catalyzed remote C–H functionalization of thioethers. RSC Adv. 2022, 12, 10835–10845. [Google Scholar] [CrossRef]
- Yang, K.; Song, M.; Liu, H.; Ge, H. Palladium-catalyzed direct asymmetric C–H bond functionalization enabled by the directing group strategy. Chem. Sci. 2020, 11, 12616–12632. [Google Scholar] [CrossRef]
- Niu, B.; Yang, K.; Lawrence, B.; Ge, H. Transient ligand-enabled transition metal-catalyzed C–H functionalization. ChemSusChem 2019, 12, 2955–2969. [Google Scholar] [CrossRef]
- Huang, J.; Liu, F.; Du, F.; Zeng, L.; Chen, Z. Cp*Rh/Ag catalyzed C–H activation/cyclization sequences of NH-sulfoximines to fused aza-polyheterocycles under gentle conditions. Green Synth. Catal. 2023, 4, 160–168. [Google Scholar] [CrossRef]
- Sonehara, T.M.S.; Yamazaki, S.; Kawatsura, M. Iron-catalyzed intermolecular hydrothiolation of internal alkynes with thiosalicylic acids, and sequential intramolecular cyclization reaction. Org. Lett. 2017, 19, 4299–4302. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Arcos, U.A.; Rojas-Ocampo, J.; Porcel, S. Oxidative cyclization of alkenoic acids promoted by AgOAc. Dalton Trans. 2016, 45, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Niu, B.; Ma, Z.; Wang, H.; Lawrence, B.; Ge, H. Silver-promoted site-selective intramolecular cyclization of 2-methylthiobenzamide through α-C(sp3)–H functionalization. J. Org. Chem. 2019, 84, 14045–14052. [Google Scholar] [CrossRef]
- Mowry, D.T.; Yanko, W.H.; Ringwald, E.L. 2-Methyl-4-keto-1,3-benzodioxanes from salicylic Acids and vinyl Acetate. J. Am. Chem. Soc. 1947, 69, 2358–2361. [Google Scholar] [CrossRef]
- Holloway, G.A.; Hugel, H.M.; Rizzacasa, M.A. Formal total synthesis of salicylihalamides A and B. J. Org. Chem. 2003, 68, 2200–2204. [Google Scholar] [CrossRef]
- Lin, F.; Song, Q.; Gao, Y.; Cui, X. A catalyst-free, facile and efficient approach to cyclic esters: Synthesis of 4H-benzo[d][1,3]dioxin-4-ones. RSC Adv. 2014, 4, 19856–19860. [Google Scholar] [CrossRef]
- Senatore, R.; Malik, M.; Spreitzer, M.; Holzer, W.; Pace, V. Direct and chemoselective electrophilic monofluoromethylation of heteroatoms (O-, S-, N-, P-, Se-) with fluoroiodomethane. Org. Lett. 2020, 22, 1345–1349. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Wang, M.; Chen, H.X.; Chen, B.; Liang, H.; Zhang, Y.; Pang, J.; Qiu, L. Highly efficient synthesis of benzodioxins with a 2-site quaternary carbon structure by secondary amine-catalyzed dual Michael cascade reactions. Org. Biomol. Chem. 2018, 16, 5533–5538. [Google Scholar] [CrossRef]
- Manna, K.; Begam, H.M.; Samanta, K.; Jana, R. Overcoming the deallylation problem: Palladium(II)-catalyzed hemo-, regio-, and stereoselective allylic oxidation of aryl allyl ether, amine, and amino acids. Org. Lett. 2020, 22, 7443–7449. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, M.; Wei, L. Copper-catalyzed synthesis of benzo[d][1,3]dioxin-4-ones via tandem Ar–halogen bond hydroxylation and dichloromethane-based double Williamson etherification. New J. Chem. 2017, 41, 4776–4778. [Google Scholar] [CrossRef]
- Bhaskaran, R.P.; Nayak, K.H.; Babu, B.P. Synthesis of functionalized benzo [1,3]dioxin-4-ones from salicylic acid and acetylenic esters and their direct amidation. RSC Adv. 2021, 11, 24570–24574. [Google Scholar] [CrossRef] [PubMed]





















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.; Yang, K. Recent Advances in the Synthesis of 4H-Benzo[d][1,3]oxathiin-4-ones and 4H-Benzo[d][1,3]dioxin-4-ones. Organics 2025, 6, 48. https://doi.org/10.3390/org6040048
Pan L, Yang K. Recent Advances in the Synthesis of 4H-Benzo[d][1,3]oxathiin-4-ones and 4H-Benzo[d][1,3]dioxin-4-ones. Organics. 2025; 6(4):48. https://doi.org/10.3390/org6040048
Chicago/Turabian StylePan, Liling, and Ke Yang. 2025. "Recent Advances in the Synthesis of 4H-Benzo[d][1,3]oxathiin-4-ones and 4H-Benzo[d][1,3]dioxin-4-ones" Organics 6, no. 4: 48. https://doi.org/10.3390/org6040048
APA StylePan, L., & Yang, K. (2025). Recent Advances in the Synthesis of 4H-Benzo[d][1,3]oxathiin-4-ones and 4H-Benzo[d][1,3]dioxin-4-ones. Organics, 6(4), 48. https://doi.org/10.3390/org6040048

