X-Linked Hypophosphatemia Transition and Team Management
Abstract
:1. Introduction
2. Team Management
3. Transition
4. Transition in Rare Diseases
5. Transition in XLH
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahir, K.; Dhaliwal, R.; Simmons, J.; Imel, E.A.; Gottesman, G.S.; Mahan, J.D.; Prakasam, G.; Hoch, A.I.; Ramesan, P.; de Ferris, M.D.-G. Health Care Transition From Pediatric- to Adult-Focused Care in X-linked Hypophosphatemia: Expert Consensus. J. Clin. Endocrinol. Metab. 2021, 107, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Seefried, L.; Smyth, M.; Keen, R.; Harvengt, P. Burden of disease associated with X-linked hypophosphataemia in adults: A systematic literature review. Osteoporos. Int. 2020, 32, 7–22. [Google Scholar] [CrossRef]
- Giannini, S.; Bianchi, M.; Rendina, D.; Massoletti, P.; Lazzerini, D.; Brandi, M. Burden of disease and clinical targets in adult patients with X-linked hypophosphatemia. A comprehensive review. Osteoporos. Int. 2021, 32, 1937–1949. [Google Scholar] [CrossRef]
- Connor, J.; Olear, E.A.; Insogna, K.; Katz, L.; Baker, S.; Kaur, R.; Simpson, C.A.; Sterpka, J.; Dubrow, R.; Zhang, J.H.; et al. Conventional Therapy in Adults With X-Linked Hypophosphatemia: Effects on Enthesopathy and Dental Disease. J. Clin. Endocrinol. Metab. 2015, 100, 3625–3632. [Google Scholar] [CrossRef] [PubMed]
- Haffner, D.; Emma, F.; Eastwood, D.M.; Duplan, M.B.; Bacchetta, J.; Schnabel, D.; Wicart, P.; Bockenhauer, D.; Santos, F.; Levtchenko, E.; et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 2019, 15, 435–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck-Nielsen, S.S.; Mughal, Z.; Haffner, D.; Nilsson, O.; Levtchenko, E.; Ariceta, G.; Collantes, C.D.L.; Schnabel, D.; Jandhyala, R.; Mäkitie, O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J. Rare Dis. 2019, 14, 58. [Google Scholar] [CrossRef]
- Linglart, A.; Duplan, M.B.; Briot, K.; Chaussain, C.; Esterle, L.; Guillaume-Czitrom, S.; Kamenicky, P.; Nevoux, J.; Prié, D.; Rothenbuhler, A.; et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr. Connect. 2014, 3, R13–R30. [Google Scholar] [CrossRef]
- Dahir, K.; Roberts, M.S.; Krolczyk, S.; Simmons, J.H. X-Linked Hypophosphatemia: A New Era in Management. J. Endocr. Soc. 2020, 4, bvaa151. [Google Scholar] [CrossRef]
- Lambert, A.-S.; Zhukouskaya, V.; Rothenbuhler, A.; Linglart, A. X-linked hypophosphatemia: Management and treatment prospects. Jt. Bone Spine 2019, 86, 731–738. [Google Scholar] [CrossRef]
- Laurent, M.R.; De Schepper, J.; Trouet, D.; Godefroid, N.; Boros, E.; Heinrichs, C.; Bravenboer, B.; Velkeniers, B.; Lammens, J.; Harvengt, P.; et al. Consensus Recommendations for the Diagnosis and Management of X-Linked Hypophosphatemia in Belgium. Front. Endocrinol. 2021, 12, 641543. [Google Scholar] [CrossRef]
- Padidela, R.; Cheung, M.S.; Saraff, V.; Dharmaraj, P. Clinical guidelines for burosumab in the treatment of XLH in children and adolescents: British paediatric and adolescent bone group recommendations. Endocr. Connect. 2020, 9, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Baroncelli, G.I.; Mora, S. X-Linked Hypophosphatemic Rickets: Multisystemic Disorder in Children Requiring Multidisciplinary Management. Front. Endocrinol. 2021, 12, 688309. [Google Scholar] [CrossRef] [PubMed]
- Rothenbuhler, A.; Schnabel, D.; Högler, W.; Linglart, A. Diagnosis, treatment-monitoring and follow-up of children and adolescents with X-linked hypophosphatemia (XLH). Metabolism 2020, 103, 153892. [Google Scholar] [CrossRef] [PubMed]
- Lecoq, A.-L.; Brandi, M.L.; Linglart, A.; Kamenický, P. Management of X-linked hypophosphatemia in adults. Metabolism 2020, 103, 154049. [Google Scholar] [CrossRef]
- Saraff, V.; Nadar, R.; Högler, W. New Developments in the Treatment of X-Linked Hypophosphataemia: Implications for Clinical Management. Pediatr. Drugs 2020, 22, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Trombetti, A.; Al-Daghri, N.; Brandi, M.L.; Cannata-Andía, J.B.; Cavalier, E.; Chandran, M.; Chaussain, C.; Cipullo, L.; Cooper, C.; Haffner, D.; et al. Interdisciplinary management of FGF23-related phosphate wasting syndromes: A Consensus Statement on the evaluation, diagnosis and care of patients with X-linked hypophosphataemia. Nat. Rev. Endocrinol. 2022, 18, 366–384. [Google Scholar] [CrossRef]
- FerizoviÄ, N.; Marshall, J.; Williams, A.E.; Mughal, M.Z.; Shaw, N.; Mak, C.; Gardiner, O.; Hossain, P.; Upadhyaya, S. Exploring the Burden of X-Linked Hypophosphataemia: An Opportunistic Qualitative Study of Patient Statements Generated During a Technology Appraisal. Adv. Ther. 2020, 37, 770–784. [Google Scholar] [CrossRef] [Green Version]
- Hawley, S.; Shaw, N.J.; Delmestri, A.; Prieto-Alhambra, D.; Cooper, C.; Pinedo-Villanueva, R.; Javaid, M.K. Prevalence and Mortality of Individuals With X-Linked Hypophosphatemia: A United Kingdom Real-World Data Analysis. J. Clin. Endocrinol. Metab. 2020, 105, e871–e878. [Google Scholar] [CrossRef]
- Steele, A.; Gonzalez, R.; Garbalosa, J.C.; Steigbigel, K.; Grgurich, T.; Parisi, E.J.; Feinn, R.S.; Tommasini, S.M.; Macica, C.M. Osteoarthritis, Osteophytes, and Enthesophytes Affect Biomechanical Function in Adults With X-linked Hypophosphatemia. J. Clin. Endocrinol. Metab. 2020, 105, e1798–e1814. [Google Scholar] [CrossRef]
- Herrou, J.; Picaud, A.S.; Lassalle, L.; Pacot, L.; Chaussain, C.; Merzoug, V.; Hervé, A.; Gadion, M.; Rothenbuhler, A.; Kamenický, P.; et al. Prevalence of Enthesopathies in Adults With X-linked Hypophosphatemia: Analysis of Risk Factors. J. Clin. Endocrinol. Metab. 2021, 107, e224–e235. [Google Scholar] [CrossRef]
- Orlando, G.; Bubbear, J.; Clarke, S.; Keen, R.; Roy, M.; Anilkumar, A.; Schini, M.; Walsh, J.S.; Javaid, M.K.; Ireland, A. Physical function and physical activity in adults with X-linked hypophosphatemia. Osteoporos. Int. 2022, 33, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.; Rylands, A.J.; Williams, A.; Bailey, K.; Bubbear, J. Patient-Reported Complications, Symptoms, and Experiences of Living With X-Linked Hypophosphatemia Across the Life-Course. J. Endocr. Soc. 2021, 5, bvab070. [Google Scholar] [CrossRef] [PubMed]
- Skrinar, A.; Dvorak-Ewell, M.; Evins, A.; Macica, C.; Linglart, A.; Imel, E.A.; Theodore-Oklota, C.; Martin, J.S. The Lifelong Impact of X-Linked Hypophosphatemia: Results From a Burden of Disease Survey. J. Endocr. Soc. 2019, 3, 1321–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javaid, M.K.; Ward, L.; Pinedo-Villanueva, R.; Rylands, A.J.; Williams, A.; Insogna, K.; Imel, E.A. Musculoskeletal Features in Adults With X-linked Hypophosphatemia: An Analysis of Clinical Trial and Survey Data. J. Clin. Endocrinol. Metab. 2021, 107, e1249–e1262. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, T.O.; Whyte, M.P.; Imel, E.A.; Boot, A.M.; Högler, W.; Linglart, A.; Padidela, R.; Hoff, W.V.; Mao, M.; Chen, C.-Y.; et al. Burosumab Therapy in Children with X-Linked Hypophosphatemia. N. Engl. J. Med. 2018, 378, 1987–1998. [Google Scholar] [CrossRef] [Green Version]
- Insogna, K.L.; Briot, K.; Imel, E.A.; Kamenický, P.; Ruppe, M.D.; Portale, A.A.; Weber, T.; Pitukcheewanont, P.; Cheong, H.I.; de Beur, S.J.; et al. A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial Evaluating the Efficacy of Burosumab, an Anti-FGF23 Antibody, in Adults With X-Linked Hypophosphatemia: Week 24 Primary Analysis. J. Bone Miner. Res. 2018, 33, 1383–1393. [Google Scholar] [CrossRef] [Green Version]
- Imel, E.A.; Glorieux, F.H.; Whyte, M.P.; Munns, C.F.; Ward, L.M.; Nilsson, O.; Simmons, J.; Padidela, R.; Namba, N.; Cheong, H.I.; et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: A randomised, active-controlled, open-label, phase 3 trial. Lancet 2019, 393, 2416–2427. [Google Scholar] [CrossRef]
- Blum, R.W. Transition to adult health care: Setting the stage. J. Adolesc. Health 1995, 17, 3–5. [Google Scholar] [CrossRef]
- Blum, R.W.; Hirsch, D.; Kastner, T.A.; Quint, R.D.; Sandler, A.D.; Anderson, S.M.; Britto, M.; Brunstrom, J.; Buchanan, G.A.; Burke, R.; et al. A consensus statement on health care transitions for young adults with special health care needs. Pediatrics 2002, 110, 1304–1306. [Google Scholar]
- Cooley, W.C.; Sagerman, P.J. Supporting the Health Care Transition From Adolescence to Adulthood in the Medical Home. Pediatrics 2011, 128, 182–200. [Google Scholar] [CrossRef] [Green Version]
- White, P.H.; Cooley, W.C.; Boudreau, A.D.A.; Cyr, M.; Davis, B.E.; Dreyfus, D.E.; Forlenza, E.; Friedland, A.; Greenlee, C.; Mann, M.; et al. Supporting the Health Care Transition From Adolescence to Adulthood in the Medical Home. Pediatrics 2018, 142, e20182587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahan, J.D.; Betz, C.L.; Okumura, M.J.; Ferris, M.E. Self-management and Transition to Adult Health Care in Adolescents and Young Adults: A Team Process. Pediatr. Rev. 2017, 38, 305–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, F.; Biggs, K.; Aldiss, S.K.; O’Neill, P.M.; Clowes, M.; McDonagh, J.; While, A.; Gibson, F. Transition of care for adolescents from paediatric services to adult health services. Cochrane Database Syst. Rev. 2016, 4, CD009794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, P.; McManus, M.; Rogers, K.; White, P. Outcome Evidence for Structured Pediatric to Adult Health Care Transition Interventions: A Systematic Review. J. Pediatr. 2017, 188, 263–269.e15. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, J.; Thomas, I.H.; Soleimanpour, S.A. Transition from pediatric to adult care in emerging adults with type 1 diabetes: A blueprint for effective receivership. Clin. Diabetes Endocrinol. 2019, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Iotova, V.; Schalin-Jäntti, C.; Bruegmann, P.; Broesamle, M.; Bratina, N.; Tillmann, V.; Hiort, O.; Pereira, A.M. Educational and knowledge gaps within the European reference network on rare endocrine conditions. Endocr. Connect. 2021, 10, 37–44. [Google Scholar] [CrossRef]
- van Alewijk, L.; Davidse, K.; Pellikaan, K.; van Eck, J.; Hokken-Koelega, A.C.S.; Sas, T.C.; Hannema, S.; van der Lely, A.J.; de Graaff, L.C. Transition readiness among adolescents with rare endocrine conditions. Endocr. Connect. 2021, 10, 432–446. [Google Scholar] [CrossRef]
- Bidlingmaier, C.; Olivieri, M.; Schilling, F.H.; Kurnik, K.; Pekrul, I. Health Care Transition of Adolescents and Young Adults with Haemophilia: The Situation in Germany and the Munich experience. Hamostaseologie 2020, 40, 097–104. [Google Scholar] [CrossRef] [Green Version]
- Inusa, B.P.D.; Stewart, C.E.; Mathurin-Charles, S.; Porter, J.; Hsu, L.L.-Y.; Atoyebi, W.; De Montalembert, M.; Diaku-Akinwumi, I.; Akinola, N.O.; Andemariam, B.; et al. Paediatric to adult transition care for patients with sickle cell disease: A global perspective. Lancet Haematol. 2020, 7, e329–e341. [Google Scholar] [CrossRef]
- Beazer, J.; Breck, J.; Eggerding, C.; Gordon, P.; Hacker, S.; Thompson, A. Strategies to engage lost to follow-up patients with phenylketonuria in the United States: Best practice recommendations. Mol. Genet. Metab. Rep. 2020, 23, 100571. [Google Scholar] [CrossRef]
- Augustine, E.F.; Dorsey, E.R.; Saltonstall, P.L. The Care Continuum: An Evolving Model for Care and Research in Rare Diseases. Pediatrics 2017, 140, e20170108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.S.; Terrones, L.; Tompane, T.; Dillon, L.; Pian, M.; Gottschalk, M.; Norman, G.J.; Bartholomew, L.K. Preparing Adolescents With Chronic Disease for Transition to Adult Care: A Technology Program. Pediatrics 2014, 133, e1639–e1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regelmann, M.O.; Conroy, R.; Gourgari, E.; Gupta, A.; Guttmann-Bauman, I.; Heksch, R.; Kamboj, M.K.; Krishnan, S.; Lahoti, A.; Matlock, K.; et al. Pediatric Endocrinology in the Time of COVID-19: Considerations for the Rapid Implementation of Telemedicine and Management of Pediatric Endocrine Conditions. Horm. Res. Paediatr. 2020, 93, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Dogba, M.J.; Rauch, F.; Wong, T.; Ruck, J.; Glorieux, F.H.; Bedos, C. From pediatric to adult care: Strategic evaluation of a transition program for patients with osteogenesis imperfecta. BMC Health Serv. Res. 2014, 14, 489. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.R.; Germain-Lee, E.L. Osteogenesis imperfecta: Effecting the transition from adolescent to adult medical care. J. Musculoskelet. Neuronal Interact. 2012, 12, 24–27. [Google Scholar]
- Carrier, J.I.; Siedlikowski, M.; Chougui, K.; Plourde, S.-A.; Mercier, C.; Thevasagayam, G.; Lafrance, M.; Wong, T.; Bilodeau, C.; Michalovic, A.; et al. A Best Practice Initiative to Optimize Transfer of Young Adults With Osteogenesis Imperfecta From Child to Adult Healthcare Services. Clin. Nurse Spéc. 2018, 32, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [Green Version]
Bone, growth plate | Rickets * or osteomalacia, short stature |
Cartilage | Early osteoarthritis |
Kidney | Nephrocalcinosis, nephrolithiasis, chronic kidney disease, hypertension |
Cardiovascular system | Hypertension, possible left ventricular hypertrophy |
Ligament and tendons | Enthesopathy |
Muscle | Muscle weakness, pain, stiffness |
Skull | Craniosynostosis *, Arnold-Chiari type 1 malformations |
Spine | Spinal stenosis |
Teeth | Dental necrosis with severe abscesses, periodontitis, tooth loss |
Ear | Hearing loss |
QoL-related burden | Pain, physical deformities, dental complications, muscle weakness, stiffness, fatigue, mood alterations/depression, surgical procedures |
12 years: transition readiness tracking |
|
14 years: initiate assessments of transition readiness |
|
17 years: transition planning |
|
18–26 years: transfer of care |
|
3–6 months post-transfer |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubota, T. X-Linked Hypophosphatemia Transition and Team Management. Endocrines 2022, 3, 411-418. https://doi.org/10.3390/endocrines3030032
Kubota T. X-Linked Hypophosphatemia Transition and Team Management. Endocrines. 2022; 3(3):411-418. https://doi.org/10.3390/endocrines3030032
Chicago/Turabian StyleKubota, Takuo. 2022. "X-Linked Hypophosphatemia Transition and Team Management" Endocrines 3, no. 3: 411-418. https://doi.org/10.3390/endocrines3030032
APA StyleKubota, T. (2022). X-Linked Hypophosphatemia Transition and Team Management. Endocrines, 3(3), 411-418. https://doi.org/10.3390/endocrines3030032