Abstract
A twin-screw multiphase pump is essential equipment for the transfer of gas-liquid multiphase mixtures in oil and gas operations. This work addresses rotor deformation in real applications by correcting the rotor profile using the arc transition approach, eliminating teeth tips, mitigating local stress concentration, and reducing the danger of rotor deformation. Simultaneously, in conjunction with the oil and gas mixed transportation requirements of the Changqing Oilfield, the MPC208-67 twin-screw mixed transportation pump was engineered, and the essential structural specifications were established. This paper employs the Mixture multiphase flow model and the SST k-ω turbulence model to simulate the internal flow field of the pump in Changqing Oilfield, aiming to examine the impact of high-gas-content conditions on the pump’s performance and ensure it aligns with design specifications. The modeling findings indicate that the pressure in the pump progressively rises along the axial direction and remains constant within the chamber. As the void fraction of the medium increases, the pressure differential between the inlet and exit of the rotor fluid domain progressively diminishes, resulting in high-velocity fluid emerging in the interstice between driving and driven rotors. The simultaneous increase in rotational speed elevates the overall fluid velocity while diminishing the pressure value. Under rated conditions, the output pressure and flow rate of the planned multiphase pump achieve 1.8 MPa and 300 m3/h, respectively, thereby fully satisfying the design specifications. This work employs the response surface approach to optimize multi-objective performance parameters, including leakage and pressurization capacity, to enhance the pump’s operational performance under high gas content situations. The optimization results indicate a 17.87% reduction in pump leakage, an 8.86% rise in pressurization capacity, and a substantial enhancement in pump performance.