Previous Issue
Volume 6, March
 
 

Electrochem, Volume 6, Issue 2 (June 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
34 pages, 11727 KiB  
Review
Electrochemical Etching vs. Electrochemical Deposition: A Comparative Bibliometric Analysis
by Yana Suchikova, Serhii Nazarovets and Anatoli I. Popov
Electrochem 2025, 6(2), 18; https://doi.org/10.3390/electrochem6020018 - 1 May 2025
Viewed by 385
Abstract
This study presents a comprehensive bibliometric analysis of scientific publications on electrochemical etching and electrochemical deposition from 1970 to 2023. Using the Science Citation Index Expanded (SCIE) database, we analysed 5166 publications on electrochemical etching and, 30,759 publications on electrochemical deposition. The analysis [...] Read more.
This study presents a comprehensive bibliometric analysis of scientific publications on electrochemical etching and electrochemical deposition from 1970 to 2023. Using the Science Citation Index Expanded (SCIE) database, we analysed 5166 publications on electrochemical etching and, 30,759 publications on electrochemical deposition. The analysis reveals distinct yet interconnected research landscapes for these two techniques. Electrochemical etching research has focused on themes such as porous silicon, photoluminescence, and applications in photonics, while electrochemical deposition research has centred on energy storage, catalysis, and biosensing applications. Keyword co-occurrence analysis illustrates the progression from fundamental studies to specialised applications in both fields. This study highlights the importance of international collaboration and provides insights into the historical and contemporary advancements in electrochemical methods for nanomaterial synthesis. The findings underscore the complementary nature of electrochemical etching and deposition, driving innovation and offering new opportunities in materials science and technology. Full article
Show Figures

Figure 1

13 pages, 3204 KiB  
Article
Reconstruction of Electrochemical Impedance Spectroscopy from Time-Domain Pulses of a 3.7 kWh Lithium-Ion Battery Module
by Manuel Kasper, Manuel Moertelmaier, Hartmut Popp, Ferry Kienberger and Nawfal Al-Zubaidi R-Smith
Electrochem 2025, 6(2), 17; https://doi.org/10.3390/electrochem6020017 - 1 May 2025
Viewed by 145
Abstract
We demonstrate the reconstruction of battery electrochemical impedance spectroscopy (EIS) curves from time-domain pulse testing and the distribution of relaxation times (DRT) analysis. In the proposed approach, the DRT directly utilizes measured current data instead of simulated current patterns, thereby enhancing robustness against [...] Read more.
We demonstrate the reconstruction of battery electrochemical impedance spectroscopy (EIS) curves from time-domain pulse testing and the distribution of relaxation times (DRT) analysis. In the proposed approach, the DRT directly utilizes measured current data instead of simulated current patterns, thereby enhancing robustness against current variations and data anomalies. The method is demonstrated with a simulation, a single cylindrical battery cell experiment, and an experimental EIS of a completely assembled module of 448 cells. For the 3.7 kWh battery module, we applied a transient current pulse and analyzed the dynamic voltage responses. The EIS curves were reconstructed with DRT and compared to experiments across different states of charge (SoC). The experimental EIS data were corrected by a multistep calibration workflow in a frequency range from 50 mHz to 1 kHz, achieving error corrections of up to 80% at 1 kHz. The reconstructed impedances from the pulse test data are in good agreement with the EIS experiments in a broad frequency range, delivering relevant electrochemical information including the ohmic resistance and dynamic time constants of a battery module and its corresponding submodules. With the proposed workflow, rapid pulse tests can be used for extracting electrochemical information faster than standard EIS, with a 67% reduction in measurement time. This time-domain pulsing approach provides an alternative to EIS characterization, making it particularly valuable for battery monitoring, the classification of battery packs upon their return to the manufacturer, second-life applications, and recycling. Full article
Show Figures

Figure 1

14 pages, 16776 KiB  
Article
Effects of Heteroaromatic Thiol Additives on Co Electrodeposition by Surface Adsorption
by Yu Duan, Yedi Li, Tingjun Wu, Wei Xu, Lei Zhu, Qiang Liu, Yiying Wang and Wenjie Yu
Electrochem 2025, 6(2), 16; https://doi.org/10.3390/electrochem6020016 - 30 Apr 2025
Viewed by 53
Abstract
Cobalt electrochemical deposition, with its bottom–up growth properties, is a core technology for creating metal interconnects. Additives are crucial during electrodeposition to control the quality of deposits by adsorbing onto the Co surface. The functional groups of additive molecules are the key to [...] Read more.
Cobalt electrochemical deposition, with its bottom–up growth properties, is a core technology for creating metal interconnects. Additives are crucial during electrodeposition to control the quality of deposits by adsorbing onto the Co surface. The functional groups of additive molecules are the key to tailoring the adsorption behavior. This study focuses on heteroaromatic thiol additives, including 2-mercaptobenzimidazole (MBI), 2-mercapto-5-benzimidazolesulfonic acid sodium salt dehydrate (MBIS), and 2-mercaptobenzoxazole (MBO). Cyclic voltammetry, chronopotentiometry, quantum chemical calculations, and characterization tests were employed to investigate the adsorption behavior of additive molecules with different functional groups on cobalt. The results indicate that the inhibitory strength of the three additives on electrodeposition follows the following order: MBI > MBIS > MBO. The strong inhibitory effect of MBI primarily stems from the adsorption of the thiol group, the pyridine-like nitrogen in the heterocycle, and the benzene ring. MBIS exhibits reduced inhibitory capability due to the combined effects of the sulfonic acid group and hydrolysis ionization. MBO, with the introduction of an oxygen atom in the heterocycle, shows the weakest adsorption and inhibitory capability among the three. Full article
Show Figures

Figure 1

39 pages, 6578 KiB  
Article
Tribo-Electrochemical Considerations for Assessing Galvanic Corrosion Characteristics of Metals in Chemical Mechanical Planarization
by Kassapa U. Gamagedara and Dipankar Roy
Electrochem 2025, 6(2), 15; https://doi.org/10.3390/electrochem6020015 - 21 Apr 2025
Viewed by 338
Abstract
The manufacturing of integrated circuits involves multiple steps of chemical mechanical planarization (CMP) involving different materials. Mitigating CMP-induced defects is a main requirement of all CMP schemes. In this context, controlling galvanic corrosion is a particularly challenging task for planarizing device structures involving [...] Read more.
The manufacturing of integrated circuits involves multiple steps of chemical mechanical planarization (CMP) involving different materials. Mitigating CMP-induced defects is a main requirement of all CMP schemes. In this context, controlling galvanic corrosion is a particularly challenging task for planarizing device structures involving contact regions of different metals with dissimilar levels of corrosivity. Since galvanic corrosion occurs in the reactive environment of CMP slurries, an essential aspect of slurry engineering for metal CMP is to control the surface chemistries responsible for these bimetallic effects. Using a CMP system based on copper and cobalt (used in interconnects for wiring and blocking copper diffusion, respectively), the present work explores certain theoretical and experimental aspects of evaluating and controlling galvanic corrosion in barrier CMP. The limitations of conventional electrochemical tests for studying CMP-related galvanic corrosion are examined, and a tribo-electrochemical method for investigating these systems is demonstrated. Alkaline CMP slurries based on sodium percarbonate are used to planarize both Co and Cu samples. Galvanic corrosion of Co is controlled by using the metal-selective complex forming functions of malonic acid at the Co and Cu sample surfaces. A commonly used corrosion inhibitor, benzotriazole, is employed to further reduce the galvanic effects. Full article
Show Figures

Figure 1

17 pages, 6796 KiB  
Article
Study on the Corrosion Resistance and Application of Nano-Y2O3/Al2O3-Modified Anchor Rod Coatings Based on Electrodeposition Method
by Xiujuan Feng and Falong Qiu
Electrochem 2025, 6(2), 14; https://doi.org/10.3390/electrochem6020014 - 17 Apr 2025
Viewed by 262
Abstract
In the past ten years, many coal mines have encountered the problem of a premature failure of anchor rod materials. Through field investigation and laboratory research, it was found that the premature failure of these bolt materials is mostly caused by mine water [...] Read more.
In the past ten years, many coal mines have encountered the problem of a premature failure of anchor rod materials. Through field investigation and laboratory research, it was found that the premature failure of these bolt materials is mostly caused by mine water corrosion. In this paper, a Zn-Y2O3-Al2O3 composite coating was prepared by an electrodeposition method for the corrosion protection of underground anchors. Through the single-factor experiment method, the co-deposition process of Zn2+ nano-Y2O3 and nano-Al2O3 particles was studied. Microhardness was used as the index to determine the optimum preparation process for the composite coatings. Combined with FSEM and XRD tests, the results showed that the synergistic effect of nano-Y2O3 and nano-Al2O3 particles made the coating grain refined and reduced the coating defects. The hardness of the coating increased from 98.7 Hv to 347.9 Hv, and the hardness and wear resistance of the coating were improved. The hydrophobicity of the Zn-Y2O3-Al2O3 composite coating was improved, and its static contact angle was 93.28°. The corrosion resistance of the composite coating was studied through electrochemical impedance spectroscopy, the Tafel curve, corrosion morphology, and weight loss. Under the synergistic effect of nano-Y2O3 and nano-Al2O3 particles, the self-corrosion current density decreased from 4.21 × 10−4 A/cm2 to 1.06 × 10−5 A/cm2, which confirmed that the Zn-Y2O3-Al2O3 composite coating had better corrosion resistance and durability. After soaking in mine water for 63 days, the Zn-Y2O3-Al2O3 composite coating had no obvious shedding on the surface and was well preserved. The practical application results show that it has excellent corrosion resistance and durability. The Zn-Y2O3-Al2O3 nano-composite coating material has significant potential advantages in the field of corrosion resistance of underground anchor rods. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

13 pages, 5967 KiB  
Article
Ultrasonic Spray Coating of Carbon Fibers for Composite Cathodes in Structural Batteries
by Thomas Burns, Liliana DeLatte, Gabriela Roman-Martinez, Kyra Glassey, Paul Ziehl, Monirosadat Sadati, Ralph E. White and Paul T. Coman
Electrochem 2025, 6(2), 13; https://doi.org/10.3390/electrochem6020013 - 1 Apr 2025
Viewed by 398
Abstract
Structural batteries, also known as “massless batteries”, integrate energy storage directly into load-bearing materials, offering a transformative alternative to traditional Li-ion batteries. Unlike conventional systems that serve only as energy storage devices, structural batteries replace passive structural components, reducing overall weight while providing [...] Read more.
Structural batteries, also known as “massless batteries”, integrate energy storage directly into load-bearing materials, offering a transformative alternative to traditional Li-ion batteries. Unlike conventional systems that serve only as energy storage devices, structural batteries replace passive structural components, reducing overall weight while providing mechanical reinforcement. However, achieving uniform and efficient coatings of active materials on carbon fibers remains a major challenge, limiting their scalability and electrochemical performance. This study investigates ultrasonic spray coating as a precise and scalable technique for fabricating composite cathodes in structural batteries. Using a computer-controlled ultrasonic nozzle, this method ensures uniform deposition with minimal material waste while maintaining the mechanical integrity of carbon fibers. Compared to traditional techniques such as electrophoretic deposition, vacuum bag hot plate processing, and dip-coating, ultrasonic spray coating achieved superior coating consistency and reproducibility. Electrochemical testing revealed a specific capacity of 100 mAh/gLFP with 80% retention for more than 350 cycles at 0.5 C, demonstrating its potential as a viable coating solution. While structural batteries are not yet commercially viable, these findings represent a step toward their practical implementation. Further research and optimization will be essential in advancing this technology for next-generation aerospace and transportation applications. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

11 pages, 3911 KiB  
Article
Enhanced Performance of a Microbial Fuel Cell Using Double Oxidant-Treated Carbon Felts
by Bhavi Pandya, Latesh Chaudhari and Naresh R. Vaghela
Electrochem 2025, 6(2), 12; https://doi.org/10.3390/electrochem6020012 - 30 Mar 2025
Viewed by 364
Abstract
The aim of this study was to enhance and maintain bioelectricity generation from distillery spent wash using a microbial fuel cell (MFC). Electrode materials play a critical role in the generation of bioelectricity in MFCs. Utilizing double oxidant-treated carbon felts in MFC applications [...] Read more.
The aim of this study was to enhance and maintain bioelectricity generation from distillery spent wash using a microbial fuel cell (MFC). Electrode materials play a critical role in the generation of bioelectricity in MFCs. Utilizing double oxidant-treated carbon felts in MFC applications increased current density to 749.56 mA/m2 and increased peak power density to 125.23 mW/m2. Electrochemical impedance spectroscopy (EIS) analysis further verified the improved electrocatalytic activity observed in the oxidized carbon felt, consistent with the findings from cyclic voltammetry (CV) and polarization curves, thereby confirming the enhanced performance of the oxidized carbon felt electrode. Overall, the study highlights the significance of electrode morphology and surface modifications in influencing microbial adhesion, electron transport, and the overall efficiency of fuel cells using distillery spent wash as a substrate. Full article
Show Figures

Figure 1

17 pages, 2330 KiB  
Review
Design and Fabrication of Micro-Electromechanical System (MEMS)-Based μ-DMFC (Direct Methanol Fuel Cells) for Portable Applications: An Outlook
by Divya Catherin Sesu, Ganesan Narendran, Saraswathi Ramakrishnan, Kumaran Vediappan, Sankaran Esakki Muthu, Sengottaiyan Shanmugan and Karthik Kannan
Electrochem 2025, 6(2), 11; https://doi.org/10.3390/electrochem6020011 - 30 Mar 2025
Viewed by 449
Abstract
This review reveals the parameters of next-generation fuel cells for portable applications such as cellular phones, laptops, automobiles, etc. Disputes over issues such as design, fluid dynamics, channel dimensions, thermal management, and water management must be overcome for practical applications. We examine techniques [...] Read more.
This review reveals the parameters of next-generation fuel cells for portable applications such as cellular phones, laptops, automobiles, etc. Disputes over issues such as design, fluid dynamics, channel dimensions, thermal management, and water management must be overcome for practical applications. We examine techniques such as microfabrication, material selection for membranes and electrodes, and integration challenges in small-scale devices, in addition to issues like methanol crossover, low efficiency at high methanol concentrations, thermal management, and the cost of materials. The advancements in micro-DMFC stacks and prototype developments are presented, and the challenges relating to micro-DMFCs are also identified and reviewed in detail. The challenges in the development of micro-DMFC applications are also presented, including the need for a better understanding of the anode and cathode catalyst structure and for high catalyst loadings in oxidation-and-reduction reactions. Also, a comprehensive and highly valuable database for advancing innovations and enhancing the understanding of micro-DMFCs for potential applications is provided. Full article
Show Figures

Figure 1

16 pages, 3812 KiB  
Article
Electrochemical Detection of Adrenaline Using Nafion–Trimethylsilyl and Nafion–Trimethylsilyl–Ru2+-Complex Modified Electrodes
by R. Aguilar-Sánchez, D. A. Durán-Tlachino, S. L. Cabrera-Hilerio and J. L. Gárate-Morales
Electrochem 2025, 6(2), 10; https://doi.org/10.3390/electrochem6020010 - 27 Mar 2025
Viewed by 266
Abstract
The preparation and properties of Nafion–TMS (Nafion–trimethylsilyl) and Nafion–TMS–Ru2+-complex modified GC electrodes are reported for the electrochemical oxidation reaction of adrenaline (AD). The structure of Nafion–TMS was studied by atomic force microscopy. The incorporation of [Ru(bpy)3]2+ and [Ru(phen) [...] Read more.
The preparation and properties of Nafion–TMS (Nafion–trimethylsilyl) and Nafion–TMS–Ru2+-complex modified GC electrodes are reported for the electrochemical oxidation reaction of adrenaline (AD). The structure of Nafion–TMS was studied by atomic force microscopy. The incorporation of [Ru(bpy)3]2+ and [Ru(phen)3]2+ complexes into Nafion–TMS was investigated by UV-vis spectroscopy, providing information about the interaction of the modified Nafion–TMS–Ru2+-complex composite. According to electrochemical studies, the electrodes modified with this composite polymer showed a faster electron transfer and greatly improved kinetics for the redox reaction of AD in standard solutions when compared to bare and Nafion–TMS modified electrodes. The oxidation current increased linearly with adrenaline concentration in the range from 1 to 20 mM and 1 to 100 mM for Nafion–TMS and the modified Nafion–TMS–Ru2+ complex, respectively. A strong pH dependence on the electroanalytical parameters was found for adrenaline detection, indicating that electron transfer reaction occurs in tandem with proton transfer. Full article
Show Figures

Previous Issue
Back to TopTop