Next Issue
Volume 6, June
Previous Issue
Volume 5, December
 
 

Electrochem, Volume 6, Issue 1 (March 2025) – 9 articles

Cover Story (view full-size image): To promote the effective utilization of abundant sulfur resources, a novel high-sulfur-content resin was synthesized via a radical reaction between sulfur and dithiol compounds and applied as a cathode material in lithium–sulfur secondary batteries. The synthesized high-sulfur-content resin can be easily plastically deformed without heating and demonstrates high adhesion, elongation, and self-healing capabilities. Furthermore, taking advantage of its ability to dissolve in specific organic solvents, we propose a new method for dispersing/filling sulfur compounds into porous carbon in a solution state. A lithium–sulfur secondary battery using a cathode composed of a composite of high-sulfur-content resin and porous carbon exhibited high discharge capacity and capacity retention during the initial cycles. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 4096 KiB  
Article
Influence of Coconut Husk Biochar and Inter-Electrode Distance on the No-Load Voltage of the Cymbopogan citratus Microbial Plant Fuel Cell in a Pot
by Epiphane Zingbe, Damgou Mani Kongnine, Bienvenu M. Agbomahena, Pali Kpelou and Essowè Mouzou
Electrochem 2025, 6(1), 9; https://doi.org/10.3390/electrochem6010009 - 20 Mar 2025
Viewed by 310
Abstract
In a plant microbial fuel cell (P-MFC), the plant provides the fuel in the form of exudates secreted by the roots, which are oxidised by electroactive bacteria. The immature plant is hampered by low energy yields. Several factors may explain this situation, including [...] Read more.
In a plant microbial fuel cell (P-MFC), the plant provides the fuel in the form of exudates secreted by the roots, which are oxidised by electroactive bacteria. The immature plant is hampered by low energy yields. Several factors may explain this situation, including the low open-circuit voltage of the plant cell. This is a function of the development of the biofilm formed by the electroactive bacteria on the surface of the anode, in relation to the availability of the exudates produced by the roots. In order to exploit the fertilising role of biochars, a plant cell was developed from C. citratus and grown in a medium to which 5% by mass of coconut shell biochar had been added. Its effect was studied as well as the distance between the electrodes. The potential of Cymbopogon citratus was also evaluated. Three samples without biochar, with inter-electrode distances of 2, 5 and 7 cm, respectively, identified as SCS2, SCS5 and SCS7, and three with the addition of 5 % biochar, with the same inter-electrode distance values, identified as S2, S5 and S7, were prepared. Open-circuit voltage (OCV) measurements were taken at 6 a.m., 1 p.m. and 8 p.m. The results showed that all the samples had high open-circuit voltage values at 1 p.m. Samples containing 5% biochar had open-circuit voltages increased by 16 %, 8.94% and 5.78%, respectively, for inter-electrode distances of 2, 5 and 7 cm compared with those containing no biochar. Furthermore, the highest open-circuit voltage values were obtained for all samples with C. citratus at an inter-electrode distance of 5 cm. The maximum power output of the PMFC with C. citratus in this study was 75.8 mW/m2, which is much higher than the power output of PMFCs in recent studies. Full article
Show Figures

Figure 1

13 pages, 6602 KiB  
Article
Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries
by Hiroto Tominaga, Junichi Tokomoto, Kenjiro Onimura and Kazuhiro Yamabuki
Electrochem 2025, 6(1), 8; https://doi.org/10.3390/electrochem6010008 - 18 Mar 2025
Viewed by 424
Abstract
In this study, we developed lithium–sulfur rechargeable batteries using chemically modified thermoplastic sulfur polymers as cathode active materials, aiming to effectively utilize surplus sulfur resources. The resulting high-sulfur-content resins exhibited self-healing properties, extensibility, and adhesiveness. By leveraging its high solubility in specific organic [...] Read more.
In this study, we developed lithium–sulfur rechargeable batteries using chemically modified thermoplastic sulfur polymers as cathode active materials, aiming to effectively utilize surplus sulfur resources. The resulting high-sulfur-content resins exhibited self-healing properties, extensibility, and adhesiveness. By leveraging its high solubility in specific organic solvents, we successfully introduced sulfur-based compounds into porous carbon via vacuum impregnation using a solution, rather than conventional thermal impregnation. Charge–discharge measurements of lithium–sulfur (Li-S) secondary batteries assembled with this more uniform composite cathode, compared to those using elemental sulfur, demonstrated an increased discharge capacity in the initial cycles and at higher rates. Full article
Show Figures

Graphical abstract

17 pages, 3189 KiB  
Article
Transition Metal Oxides (WO3-ZrO2) as Promoters and Hydrogen Adsorption Modulators in Pt/WO3-ZrO2-C Electrocatalyst for the Reduction of NOx
by Claudia R. Santiago-Ramírez, Martha L. Hernández-Pichardo, Arturo Manzo-Robledo, Daniel A. Acuña-Leal and Miguel A. Gracia-Pinilla
Electrochem 2025, 6(1), 7; https://doi.org/10.3390/electrochem6010007 - 5 Mar 2025
Viewed by 1134
Abstract
The electrocatalytic reduction of nitric oxide and nitrogen dioxide (NOx) remains a significant challenge due to the need for stable, efficient, and cost-effective materials. This study presents a novel support system for NOx reduction in alkaline media, composed of ZrO2-WO3 [...] Read more.
The electrocatalytic reduction of nitric oxide and nitrogen dioxide (NOx) remains a significant challenge due to the need for stable, efficient, and cost-effective materials. This study presents a novel support system for NOx reduction in alkaline media, composed of ZrO2-WO3-C (ZWC), synthesized via coprecipitation. Platinum nanoparticles (10 wt.%) were loaded onto ZWC and Vulcan carbon support, using similar methods for comparison. Comprehensive physicochemical and electrochemical analyses (N2 physisorption, XRD, XPS, SEM, TEM, and cyclic and linear voltammetry) revealed that PtZWC outperformed PtC and commercial PtEtek in NOx electrocatalysis. Notably, PtZWC exhibited the highest total electric charge for NOx reduction. At the same time, the hydrogen evolution reaction (HER) was shifted to more negative cathodic potentials, indicating reduced hydrogen coverage and a modified dissociative Tafel mechanism on platinum. Additionally, the combination of WO3 and ZrO2 in ZWC enhanced electron transfer and suppressed HER by reducing NO and hydrogen atom adsorption competition. While the incorporation of WO3 and ZrO2 lowered the surface area to 96 m2/g, it significantly improved pore properties, facilitating better Pt nanoparticle dispersion (3.06 ± 0.85 nm, as confirmed by SEM and TEM). XRD analysis identified graphite and Pt phases, with monoclinic WO3 broadening PtZWC peaks (20–25°). At the same time, XPS confirmed oxidation states of Pt, W, and Zr and tungsten-related oxygen vacancies, ensuring chemical stability and enhanced catalytic activity. Full article
Show Figures

Figure 1

30 pages, 3294 KiB  
Review
Recent Advancements in Na Super Ionic Conductor-Incorporated Composite Polymer Electrolytes for Sodium-Ion Battery Application
by Kanya Koothanatham Senthilkumar, Rajagopalan Thiruvengadathan and Ramanujam Brahmadesam Thoopul Srinivasa Raghava
Electrochem 2025, 6(1), 6; https://doi.org/10.3390/electrochem6010006 - 3 Mar 2025
Viewed by 1715
Abstract
Sodium-ion batteries (SIBs) have garnered significant attention as a cost-effective and sustainable alternative to lithium-ion batteries (LIBs) due to the abundance and eco-friendly extraction of sodium. Despite the larger ionic radius and heavier mass of sodium ions, SIBs are ideal for large-scale applications, [...] Read more.
Sodium-ion batteries (SIBs) have garnered significant attention as a cost-effective and sustainable alternative to lithium-ion batteries (LIBs) due to the abundance and eco-friendly extraction of sodium. Despite the larger ionic radius and heavier mass of sodium ions, SIBs are ideal for large-scale applications, such as grid energy storage and electric vehicles, where cost and resource availability outweigh the constraints of size and weight. A critical component in SIBs is the electrolyte, which governs specific capacity, energy density, and battery lifespan by enabling ion transport between electrodes. Among various electrolytes, composite polymer electrolytes (CPEs) stand out for their non-leakage and non-flammable nature and tunable physicochemical properties. The incorporation of NASICON (Na Super Ionic CONductor) fillers into polymer matrices has shown transformative potential in enhancing SIB performance. NASICON fillers improve ionic conductivity by forming continuous ion conduction pathways and reduce polymer matrix crystallinity, thereby facilitating higher sodium-ion mobility. Additionally, these fillers enhance the mechanical properties and electrochemical performance of CPEs. Hence, this review focuses on the pivotal roles of NASICON fillers in optimizing the properties of CPEs, including ionic conductivity, structural integrity, and electrochemical stability. The mechanisms underlying sodium-ion transport facilitated by NASICON fillers in CPE will be explored, with emphasis on the influence of filler morphology and composition on electrochemical properties. By scrutinizing the recent findings, this review underscores the potential of NASICON-based composite polymer electrolytes as appropriate material for the development of advanced sodium-ion batteries. Full article
Show Figures

Figure 1

12 pages, 3920 KiB  
Article
Tape Casting of NASICON-Based Separators with High Conductivity for Na All-Solid-State Batteries
by Melanie Rosen, Samir Mahioui, Christian Schwab, Gerald Dück and Martin Finsterbusch
Electrochem 2025, 6(1), 5; https://doi.org/10.3390/electrochem6010005 - 16 Feb 2025
Cited by 1 | Viewed by 721
Abstract
Sodium–ion batteries are emerging as strong competition to lithium–ion batteries in certain market sections. While these cells do not use critical raw materials, they still feature a liquid electrolyte with all its inherent safety issues, like high flammability and toxicity. Alternative concepts like [...] Read more.
Sodium–ion batteries are emerging as strong competition to lithium–ion batteries in certain market sections. While these cells do not use critical raw materials, they still feature a liquid electrolyte with all its inherent safety issues, like high flammability and toxicity. Alternative concepts like oxide-ceramic-based all-solid-state batteries feature the highest possible safety while still maintaining competitive electrochemical performance. However, production technologies are still in their infancy, especially for Na all-solid-state batteries, and need to be urgently developed to enable solid-state-battery technology using only abundant raw materials. In this study, the additive-free production of freestanding, undoped NaSICON separators via tape-casting is demonstrated, having an extremely high total Na-ion conductivity of up to 2.44 mS·cm−1 at room temperature. Nevertheless, a strong influence of sample thickness on phase purity as well as electrochemical performance is uncovered. Additionally, the effect of self-coating of NaSICON during high-temperature treatment was evaluated as a function of thickness. While advantageous for increasing the stability against Na-metal anodes, detrimental consequences are identified when separator thickness is reduced to industrially relevant values and mitigation measures are postulated. Full article
Show Figures

Graphical abstract

12 pages, 1203 KiB  
Article
Electrochemical Investigations of the Suitability of 1-Propyl-2,3-dimethylidazolium bis(trifluoromethylsulfonyl)imide as the Electrolyte for Application in Micro–Mesoporous Carbon-Electrode-Based Supercapacitors and Other Electrochemical Systems
by Jaanus Kruusma and Enn Lust
Electrochem 2025, 6(1), 4; https://doi.org/10.3390/electrochem6010004 - 13 Feb 2025
Viewed by 548
Abstract
The electrochemical properties of the hydrophobic room-temperature ionic liquid 1-propyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (PMMIm(TFSI)) were investigated, for the first time, using an electrochemical double-layer capacitor-mimicking cell containing two identical-sized micro–mesoporous molybdenum carbide-derived carbon electrodes (MMP-C(Mo2C)), by applying cyclic voltammetry (CV) and electrochemical impedance [...] Read more.
The electrochemical properties of the hydrophobic room-temperature ionic liquid 1-propyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (PMMIm(TFSI)) were investigated, for the first time, using an electrochemical double-layer capacitor-mimicking cell containing two identical-sized micro–mesoporous molybdenum carbide-derived carbon electrodes (MMP-C(Mo2C)), by applying cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Surprisingly, despite the substitution of the slightly acidic hydrogen atom with a methyl group at the carbon atom located between two nitrogen atoms in the imidazolium cation, the EIS and CV measurements demonstrated that PMMIm(TFSI) began to decompose electrochemically at the same cell potential (ΔE) as 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIm(BF4)), specifically at ΔE = 2.75 V. However, the CV and EIS data indicated that PMMIm(TFSI) decomposed with a significantly lower intensity than EMIm(BF4). Therefore, we believe that the use of PMMIm(TFSI) as the electrolyte will enable the construction of safer supercapacitors that can tolerate short periods of over-polarization up to ΔE = 4.0 V. However, when the ΔE ≤ 3.2 V was applied, EMIm(BF4) offered higher maximum power compared to PMMIm(TFSI). We found that the calculated maximum gravimetric power precisely describes the maximum ΔE applicable for a supercapacitor candidate. Full article
Show Figures

Figure 1

11 pages, 2156 KiB  
Communication
Enhanced Hydrogen Evolution Reaction of a Zn+2-Stabilized Tungstate Electrocatalyst
by Dasu Ram Paudel, Gopi Chandra Kaphle, Bhoj Raj Poudel, Mukunda KC, Manjinder Singh and Gunendra Prasad Ojha
Electrochem 2025, 6(1), 3; https://doi.org/10.3390/electrochem6010003 - 24 Jan 2025
Cited by 1 | Viewed by 1097
Abstract
Due to their diverse properties and functionalities, cost-effective transition metal-based nanomaterials have been rigorously studied for electrochemical applications. Ultrathin nanosheets have been identified as the most effective electrodes for catalyzing water-splitting reactions in both acidic and alkaline environments. Here, we reported ZnWO4 [...] Read more.
Due to their diverse properties and functionalities, cost-effective transition metal-based nanomaterials have been rigorously studied for electrochemical applications. Ultrathin nanosheets have been identified as the most effective electrodes for catalyzing water-splitting reactions in both acidic and alkaline environments. Here, we reported ZnWO4, a member of the tungstate family, as an effective electrocatalyst for promoting the electrochemical hydrogen evolution reaction. The Zn+2-stabilized tungstate showed a remarkable cathodic reaction during the water-splitting reaction with low overpotential (136 mV at 10 mA cm−2) and small HER kinetics (Tafel Slope = 75.3 mV dec−1) and long-term cyclic durability. The high-valence tungsten stabilized with divalent Zn+2 promotes electron transfer during the reaction, making it an advanced electrocatalyst for green hydrogen production. Full article
Show Figures

Figure 1

12 pages, 2307 KiB  
Article
Role of Electrochemical Precipitation Parameters in Developing Mixed-Phase Battery-Grade Nickel Hydroxide
by Chinmaya Kumar Sarangi, G. Lilishree Achary, Tondepu Subbaiah, Raja Kishore Paramguru and Sanat Kumar Roy
Electrochem 2025, 6(1), 2; https://doi.org/10.3390/electrochem6010002 - 16 Jan 2025
Viewed by 1025
Abstract
There is a high demand for nickel hydroxide as an engineering material used in the positive electrode of nickel metal hydride (Ni-MH) rechargeable batteries. These batteries are extensively used in various small instruments, disposable batteries, and electric vehicles. The structure of nickel hydroxide [...] Read more.
There is a high demand for nickel hydroxide as an engineering material used in the positive electrode of nickel metal hydride (Ni-MH) rechargeable batteries. These batteries are extensively used in various small instruments, disposable batteries, and electric vehicles. The structure of nickel hydroxide significantly influences the discharge capacity and energy density, key properties of Ni-MH batteries, and this structure is primarily determined by the synthesis method used. In this study, nickel hydroxide was synthesized using an electrochemical precipitation method, with current density acting as a parameter to control the desired phase of the product, whether α-nickel hydroxide, β-nickel hydroxide, or a combination of both. At a current density of 50 A/m2, the synthesized nickel hydroxide demonstrated a smaller particle size and a superior discharge electrochemical property in comparison to that generated at 500 A/m2. The effect of agitation in catholyte was also investigated to examine the change in discharge property of the precipitated material. The product synthesized at 500 A/m2 from an agitated catholyte exhibited a tap density of 1.24 g/cc and an improved discharge capacity of 254 mAh per gram of Ni(OH)2. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

15 pages, 5219 KiB  
Article
Comparative Analysis of the Corrosion Behavior of Plain and Nanoporous Copper
by Zhen Lei, Ksenya Mull and Nikolay Dimitrov
Electrochem 2025, 6(1), 1; https://doi.org/10.3390/electrochem6010001 - 13 Jan 2025
Viewed by 1069
Abstract
This research investigates the corrosion behavior of copper (Cu) through a comprehensive analysis of both plain and nanoporous Cu thin films. A combination of weight-loss methods for quantitative analysis, along with polarization testing and scanning electron microscopy, is employed for both quantitative and [...] Read more.
This research investigates the corrosion behavior of copper (Cu) through a comprehensive analysis of both plain and nanoporous Cu thin films. A combination of weight-loss methods for quantitative analysis, along with polarization testing and scanning electron microscopy, is employed for both quantitative and qualitative assessments of Cu corrosion dynamics. The corrosion mechanisms in chloride and nitrate solutions are compared, with an additional discussion on the influence of atmospheric oxygen (O2). The results demonstrate that chloride ions and the presence of O2 create the most severe corrosion conditions, while the concentration of salts has a relatively minor effect on the corrosion behavior. Notably, the comparative study reveals that nanoporous Cu exhibits a greater corrosion tendency, as indicated by more negative corrosion potentials. However, its corrosion rates are lower than those of plain Cu, as determined by corrosion current density measurements. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop