Dense Water Formation Variability in the Aegean Sea from 1947 to 2023
Abstract
:1. Introduction
1.1. The Aegean Sea and the Eastern Mediterranean Transient Event
1.2. Intermediate Water Formation in the Aegean
1.3. Influence of the BIOS Mechanism
1.4. Overturning Processes
1.5. Variability of Hydrographic Characteristics
1.5.1. Temperature Variability
1.5.2. Salinity Variability
1.6. Purpose and Structure of the Work
2. Materials and Methods
2.1. Hydrography Data
2.2. Sea Level and Geostrophic Circulation
2.3. Hydrodynamic Model Data
2.4. Atmospheric Forcing
2.5. BSW Inflow
3. Results
3.1. Variability in the Athos Basin from 2016 to 2023
3.2. Variability in the Aegean Sea since 1985
3.3. Erosion of the TMW in the Cretan Sea after 2017
3.4. Variability of the CIW
3.5. Variability in the Aegean Sea before 1985
3.6. Variability of Forcing Mechanisms
4. Discussion
5. Conclusions
- The Aegean Sea has been in a state of increased dense water formation from 2017 to 2022. Deep Cretan Intermediate water was formed almost biannually due to seesaw atmospheric variability.
- Record-high salinity has been observed in the upper and intermediate layers of the Aegean Sea from 2019 to 2023. The BSW inflow appears to be very low during that period, suggesting that the dilution of the Aegean Sea by BSW plays a significant role for the near-surface salt budget of the basin, but also for the salt budget of the intermediate layers through enhanced DWF in the North–Central Aegean.
- Intrusions of dense water from the North–Central Aegean Sea contribute to the erosion of transitional Mediterranean waters in the South Aegean Sea. The increased DWF around the early 1950s, mid-1970s, and after 2017 in the North–Central Aegean Sea coincided with the erosion of the TMW in the South Aegean Sea.
- The density variability of the CIW depends mostly on temperature; thus, a salinity-driven DWF variability should be relevant mostly in the North–Central Aegean Sea. The intrusions of dense waters from the North–Central Aegean Sea probably play a role by uplifting the intermediate waters in the Cretan Sea.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zervakis, V.; Theocharis, A.; Georgopoulos, D. Circulation and hydrography of the open seas. In State of the Hellenic Marine Environment; Papathanasiou, E., Zenetos, A., Eds.; Hellenic Center for Marine Research: Anavyssos, Greece, 2005; pp. 104–123. [Google Scholar]
- Mavropoulou, A.M.; Vervatis, V.; Sofianos, S. The Mediterranean Sea overturning circulation: A hindcast simulation (1958–2015) with an eddy-resolving (1/36∘) model. Deep Sea Res. Part I Oceanogr. Res. Pap. 2022, 187, 103846. [Google Scholar] [CrossRef]
- Cardin, V.; Civitarese, G.; Hainbucher, D.; Bensi, M.; Rubino, A. Thermohaline properties in the Eastern Mediterranean in the last three decades: Is the basin returning to the pre-EMT situation? Ocean Sci. 2015, 11, 53–66. [Google Scholar] [CrossRef]
- Roether, W.; Manca, B.B.; Klein, B.; Bregant, D. Recent changes in eastern Mediterranean deep waters. Science 1996, 271, 333–335. [Google Scholar] [CrossRef]
- Velaoras, D.; Papadopoulos, V.P.; Kontoyiannis, H.; Cardin, V.; Civitarese, G. Water masses and hydrography during April and June 2016 in the Cretan Sea and Cretan Passage (Eastern Mediterranean Sea). Deep Sea Res. Part II Top. Stud. Oceanogr. 2019, 164, 25–40. [Google Scholar] [CrossRef]
- Malanotte-Rizzoli, P.; Manca, B.B.; d’Alcala, M.R.; Theocharis, A.; Brenner, S.; Budillon, G.; Ozsoy, E. The Eastern Mediterranean in the 80s and in the 90s: The big transition in the intermediate and deep circulations. Dyn. Atmos. Ocean. 1999, 29, 365–395. [Google Scholar] [CrossRef]
- Klein, B.; Roether, W.; Manca, B.B.; Bregant, D.; Beitzel, V.; Kovacevic, V.; Luchetta, A. The large deep water transient in the Eastern Mediterranean. Deep Sea Res. Part I Oceanogr. Res. Pap. 1999, 46, 371–414. [Google Scholar] [CrossRef]
- Roether, W.; Klein, B.; Manca, B.B.; Theocharis, A.; Kioroglou, S. Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Prog. Oceanogr. 2007, 74, 540–571. [Google Scholar] [CrossRef]
- Roether, W.; Klein, B.; Hainbucher, D. The Eastern Mediterranean Transient: Evidence for similar events previously? In The Mediterranean Sea: Temporal Variability and Spatial Patterns; Borzelli, G.L.E., Gačić, M., Lionello, P., Malanotte-Rizzoli, P., Eds.; Number 202 in Geophysical Monograph Series; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 75–83. [Google Scholar] [CrossRef]
- Incarbona, A.; Martrat, B.; Mortyn, P.G.; Sprovieri, M.; Ziveri, P.; Gogou, A.; Jordà, G.; Xoplaki, E.; Luterbacher, J.; Langone, L.; et al. Mediterranean circulation perturbations over the last five centuries: Relevance to past Eastern Mediterranean Transient-type events. Sci. Rep. 2016, 6, 29623. [Google Scholar] [CrossRef] [PubMed]
- Cortina-Guerra, A.; Gomez-Navarro, J.J.; Martrat, B.; Montávez, J.P.; Incarbona, A.; Grimalt, J.O.; Sicre, M.A.; Mortyn, P.G. Northern Hemisphere atmospheric pattern enhancing Eastern Mediterranean Transient-type events during the past 1000 years. Clim. Past 2021, 17, 1523–1532. [Google Scholar] [CrossRef]
- Lascaratos, A.; Roether, W.; Nittis, K.; Klein, B. Recent changes in deep water formation and spreading in the eastern Mediterranean Sea: A review. Prog. Oceanogr. 1999, 44, 5–36. [Google Scholar] [CrossRef]
- Vervatis, V.D.; Sofianos, S.S.; Skliris, N.; Somot, S.; Lascaratos, A.; Rixen, M. Mechanisms controlling the thermohaline circulation pattern variability in the Aegean–Levantine region. A hindcast simulation (1960–2000) with an eddy resolving model. Deep Sea Res. Part I Oceanogr. Res. Pap. 2013, 74, 82–97. [Google Scholar] [CrossRef]
- Zervakis, V.; Georgopoulos, D.; Drakopoulos, P.G. The role of the North Aegean in triggering the recent Eastern Mediterranean climatic changes. J. Geophys. Res. Ocean. 2000, 105, 26103–26116. [Google Scholar] [CrossRef]
- Velaoras, D.; Krokos, G.; Theocharis, A. Recurrent intrusions of transitional waters of Eastern Mediterranean origin in the Cretan Sea as a tracer of Aegean Sea dense water formation events. Prog. Oceanogr. 2015, 135, 113–124. [Google Scholar] [CrossRef]
- Georgopoulos, D.; Chronis, G.; Zervakis, V.; Lykousis, V.; Poulos, S.; Iona, A. Hydrology and circulation in the Southern Cretan Sea during the CINCS experiment (May 1994–September 1995). Prog. Oceanogr. 2000, 46, 89–112. [Google Scholar] [CrossRef]
- Schlitzer, R.; Roether, W.; Oster, H.; Junghans, H.G.; Hausmann, M.; Johannsen, H.; Michelato, A. Chlorofluoromethane and oxygen in the Eastern Mediterranean. Deep Sea Res. Part A Oceanogr. Res. Pap. 1991, 38, 1531–1551. [Google Scholar] [CrossRef]
- Velaoras, D.; Krokos, G.; Nittis, K.; Theocharis, A. Dense intermediate water outflow from the Cretan Sea: A salinity driven, recurrent phenomenon, connected to thermohaline circulation changes. J. Geophys. Res. Ocean. 2014, 119, 4797–4820. [Google Scholar] [CrossRef]
- Krokos, G.; Velaoras, D.; Korres, G.; Perivoliotis, L.; Theocharis, A. On the continuous functioning of an internal mechanism that drives the Eastern Mediterranean thermohaline circulation: The recent activation of the Aegean Sea as a dense water source area. J. Mar. Syst. 2014, 129, 464–489. [Google Scholar] [CrossRef]
- Theocharis, A.; Krokos, G.; Velaoras, D.; Korres, G. An Internal mechanism driving the alternation of the Eastern Mediterranean dense/deep water sources. In The Mediterranean Sea: Temporal Variability and Spatial Patterns; Borzelli, G.L.E., Gačić, M., Lionello, P., Malanotte-Rizzoli, P., Eds.; Number 202 in Geophysical Monograph Series; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; Chapter 8; pp. 113–137. [Google Scholar] [CrossRef]
- Klein, B.; Roether, W.; Civitarese, G.; Gacic, M.; Manca, B.B.; d’Alcala, M.R. Is the Adriatic returning to dominate the production of Eastern Mediterranean Deep Water. Geophys. Res. Lett. 2000, 27, 3377–3380. [Google Scholar] [CrossRef]
- Borzelli, G.L.E.; Gačić, M.; Cardin, V.; Civitarese, G. Eastern Mediterranean Transient and reversal of the Ionian Sea circulation. Geophys. Res. Lett. 2009, 36, L15108. [Google Scholar] [CrossRef]
- Gačić, M.; Borzelli, G.L.E.; Civitarese, G.; Cardin, V.; Yari, S. Can internal processes sustain reversals of the ocean upper circulation The Ionian Sea example. Geophys. Res. Lett. 2010, 37, L09608. [Google Scholar] [CrossRef]
- Gačić, M.; Civitarese, G.; Eusebi Borzelli, G.; Kovačević, V.; Poulain, P.M.; Theocharis, A.; Menna, M.; Catucci, A.; Zarokanellos, N. On the relationship between the decadal oscillations of the northern Ionian Sea and the salinity distributions in the eastern Mediterranean. J. Geophys. Res. Ocean. 2011, 116, C12002. [Google Scholar] [CrossRef]
- Gačić, M.; Schroeder, K.; Civitarese, G.; Cosoli, S.; Vetrano, A.; Eusebi Borzelli, G.L. Salinity in the Sicily Channel corroborates the role of the Adriatic–Ionian Bimodal Oscillating System (BiOS) in shaping the decadal variability of the Mediterranean overturning circulation. Ocean Sci. 2013, 9, 83–90. [Google Scholar] [CrossRef]
- Bensi, M.; Velaoras, D.; Meccia, V.; Cardin, V. Effects of the Eastern Mediterranean Sea circulation on the thermohaline properties as recorded by fixed deep-ocean observatories. Deep Sea Res. Part I Oceanogr. Res. Pap. 2016, 112, 1–13. [Google Scholar] [CrossRef]
- Reale, M.; Crise, A.; Farneti, R.; Mosetti, R. A process study of the Adriatic-Ionian System baroclinic dynamics. J. Geophys. Res. Ocean. 2016, 121, 5872–5887. [Google Scholar] [CrossRef]
- Reale, M.; Salon, S.; Crise, A.; Farneti, R.; Mosetti, R.; Sannino, G. Unexpected Covariant Behavior of the Aegean and Ionian Seas in the Period 1987–2008 by Means of a Nondimensional Sea Surface Height Index. J. Geophys. Res. Ocean. 2017, 122, 8020–8033. [Google Scholar] [CrossRef]
- Artale, V.; Falcini, F.; Marullo, S.; Bensi, M.; Kokoszka, F.; Iudicone, D.; Rubino, A. Linking mixing processes and climate variability to the heat content distribution of the Eastern Mediterranean abyss. Sci. Rep. 2018, 8, 11317. [Google Scholar] [CrossRef] [PubMed]
- Rubino, A.; Gačić, M.; Bensi, M.; Kovačević, V.; Malačič, V.; Menna, M.; Negretti, M.E.; Sommeria, J.; Zanchettin, D.; Barreto, R.V.; et al. Experimental evidence of long-term oceanic circulation reversals without wind influence in the North Ionian Sea. Sci. Rep. 2020, 10, 1905. [Google Scholar] [CrossRef]
- Cusinato, E.; Zanchettin, D.; Sannino, G.; Rubino, A. Mediterranean thermohaline response to large-scale winter atmospheric forcing in a high-resolution ocean model simulation. Pure Appl. Geophys. 2018, 175, 4083–4110. [Google Scholar] [CrossRef]
- Demirov, E.; Pinardi, N. Simulation of the Mediterranean Sea circulation from 1979 to 1993: Part I. The interannual variability. J. Mar. Syst. 2002, 33–34, 23–50. [Google Scholar] [CrossRef]
- Liu, F.; Mikolajewicz, U.; Six, K.D. Drivers of the decadal variability of the North Ionian Gyre upper layer circulation during 1910–2010: A regional modelling study. Clim. Dyn. 2021, 58, 2065–2077. [Google Scholar] [CrossRef]
- Pinardi, N.; Zavatarelli, M.; Adani, M.; Coppini, G.; Fratianni, C.; Oddo, P.; Simoncelli, S.; Tonani, M.; Lyubartsev, V.; Dobricic, S. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 2015, 132, 318–332. [Google Scholar] [CrossRef]
- Schroeder, K.; Chiggiato, J.; Josey, S.A.; Borghini, M.; Aracri, S.; Sparnocchia, S. Rapid response to climate change in a marginal sea. Sci. Rep. 2017, 7, 4065. [Google Scholar] [CrossRef]
- Velaoras, D.; Papadopoulos, V.P.; Kontoyiannis, H.; Papageorgiou, D.K.; Pavlidou, A. The Response of the Aegean Sea (Eastern Mediterranean) to the Extreme 2016–2017 Winter. Geophys. Res. Lett. 2017, 44, 9416–9423. [Google Scholar] [CrossRef]
- Skliris, N.; Sofianos, S.; Gkanasos, A.; Mantziafou, A.; Vervatis, V.; Axaopoulos, P.; Lascaratos, A. Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dyn. 2012, 62, 13–30. [Google Scholar] [CrossRef]
- Kassis, D.; Korres, G. Recent hydrological status of the Aegean Sea derived from free drifting profilers. Mediterr. Mar. Sci. 2021, 22, 347–361. [Google Scholar] [CrossRef]
- Potiris, M.; Mamoutos, I.G.; Tragou, E.; Zervakis, V.; Kassis, D.; Ballas, D. Dense water formation in the North–Central Aegean Sea during winter 2021–2022. J. Mar. Sci. Eng. 2024, 12, 221. [Google Scholar] [CrossRef]
- Zervakis, V.; Krauzig, N.; Tragou, E.; Kunze, E. Estimating vertical mixing in the deep north Aegean Sea using argo data corrected for conductivity sensor drift. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 154, 103144. [Google Scholar] [CrossRef]
- Theocharis, A.; Klein, B.; Nittis, K.; Roether, W. Evolution and status of the Eastern Mediterranean Transient (1997–1999). J. Mar. Syst. 2002, 33–34, 91–116. [Google Scholar] [CrossRef]
- Iona, A.; Theodorou, A.; Sofianos, S.; Watelet, S.; Troupin, C.; Beckers, J.M. Mediterranean Sea climatic indices: Monitoring long term variability and climate changes. Earth Syst. Sci. Data 2018, 10, 1829–1842. [Google Scholar] [CrossRef]
- Aydogdu, A.; Miraglio, P.; Escudier, R.; Clementi, E.; Masina, S. The dynamical role of upper layer salinity in the Mediterranean Sea. State Planet 2023, 1, 1–9. [Google Scholar] [CrossRef]
- Storto, A.; Masina, S.; Simoncelli, S.; Iovino, D.; Cipollone, A.; Drevillon, M.; Drillet, Y.; von Schuckman, K.; Parent, L.; Garric, G.; et al. The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Clim. Dyn. 2019, 53, 287–312. [Google Scholar] [CrossRef]
- Testor, P.; Bosse, A.; Houpert, L.; Margirier, F.; Mortier, L.; Legoff, H.; Dausse, D.; Labaste, M.; Karstensen, J.; Hayes, D.; et al. Multiscale Observations of Deep Convection in the Northwestern Mediterranean Sea during Winter 2012–2013 Using Multiple Platforms. J. Geophys. Res. Ocean. 2018, 123, 1745–1776. [Google Scholar] [CrossRef]
- Jordà, G.; Von Schuckmann, K.; Josey, S.A.; Caniaux, G.; García-Lafuente, J.; Sammartino, S.; Özsoy, E.; Polcher, J.; Notarstefano, G.; Poulain, P.M.; et al. The Mediterranean Sea heat and mass budgets: Estimates, uncertainties and perspectives. Prog. Oceanogr. 2017, 156, 174–208. [Google Scholar] [CrossRef]
- Fedele, G.; Mauri, E.; Notarstefano, G.; Poulain, P.M. Characterization of the Atlantic Water and Levantine Intermediate Water in the Mediterranean Sea using 20 years of Argo data. Ocean Sci. 2022, 18, 129–142. [Google Scholar] [CrossRef]
- Ben Ismail, S.; Schroeder, K.; Chiggiato, J.; Sparnocchia, S.; Borghini, M. Long term changes monitored in two Mediterranean channels. In Copernicus Marine Service Ocean State Report, Issue 5. J. Oper. Oceanogr. 2021, 14, s48–s53. [Google Scholar] [CrossRef]
- Margirier, F.; Testor, P.; Heslop, E.; Mallil, K.; Bosse, A.; Houpert, L.; Mortier, L.; Bouin, M.N.; Coppola, L.; D’Ortenzio, F.; et al. Abrupt warming and salinification of intermediate waters interplays with decline of deep convection in the Northwestern Mediterranean Sea. Sci. Rep. 2020, 10, 20923. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, K.; Chiggiato, J.; Ben Ismail, S.; Borghini, M.; Patti, B.; Sparnocchia, S. Mediterranean deep and intermediate water masses. In Copernicus Marine Service Ocean State Report, Issue 3. J. Oper. Oceanogr. 2019, 12, s18–s21. [Google Scholar] [CrossRef]
- Mallil, K.; Testor, P.; Bosse, A.; Margirier, F.; Houpert, L.; Le Goff, H.; Mortier, L.; Louanchi, F. The Levantine Intermediate Water in the western Mediterranean and its interactions with the Algerian Gyres: Insights from 60 years of observation. Ocean Sci. 2022, 18, 937–952. [Google Scholar] [CrossRef]
- Kubin, E.; Poulain, P.M.; Mauri, E.; Menna, M.; Notarstefano, G. Levantine Intermediate and Levantine Deep Water Formation: An Argo Float Study from 2001 to 2017. Water 2019, 11, 1781. [Google Scholar] [CrossRef]
- Kubin, E.; Menna, M.; Mauri, E.; Notarstefano, G.; Mieruch, S.; Poulain, P.M. Heat content and temperature trends in the Mediterrranean Sea as derived from Argo float data. Front. Mar. Sci. 2023, 10, 1271638. [Google Scholar] [CrossRef]
- Shaltout, M.; Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 2014, 56, 411–443. [Google Scholar] [CrossRef]
- Marullo, S.; Artale, V.; Santoleri, R. The SST Multidecadal Variability in the Atlantic–Mediterranean Region and Its Relation to AMO. J. Clim. 2011, 24, 4385–4401. [Google Scholar] [CrossRef]
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Buongiorno Nardelli, B. New evidence of Mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef]
- Harzallah, A.; Jordà, G.; Dubois, C.; Sannino, G.; Carillo, A.; Li, L.; Arsouze, T.; Cavicchia, L.; Beuvier, J.; Akhtar, N. Long term evolution of heat budget in the Mediterranean Sea from Med-CORDEX forced and coupled simulations. Clim. Dyn. 2016, 51, 1145–1165. [Google Scholar] [CrossRef]
- Papadopoulos, V.P.; Kontoyiannis, H.; Ruiz, S.; Zarokanellos, N. Influence of atmospheric circulation on turbulent air-sea heat fluxes over the Mediterranean Sea during winter. J. Geophys. Res. Ocean. 2012, 117, C03044. [Google Scholar] [CrossRef]
- Grodsky, S.A.; Reul, N.; Bentamy, A.; Vandemark, D.; Guimbard, S. Eastern Mediterranean salinification observed in satellite salinity from SMAP mission. J. Mar. Syst. 2019, 198, 103190. [Google Scholar] [CrossRef]
- Josey, S.A.; Somot, S.; Tsimplis, M. Impacts of atmospheric modes of variability on Mediterranean Sea surface heat exchange. J. Geophys. Res. Ocean. 2011, 116, C02032. [Google Scholar] [CrossRef]
- Gunduz, M.; Dobricic, S.; Oddo, P.; Pinardi, N.; Guarnieri, A. Impact of Levantine Intermediate Water on the interannual variability of the Adriatic Sea based on simulations with a fine resolution ocean model. Ocean Model. 2013, 72, 253–263. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Khodayar, S. A warming Mediterranean: 38 years of increasing sea surface temperature. Remote Sens. 2020, 12, 2687. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Palau, J. Sea Surface Temperature in the Mediterranean: Trends and Spatial Patterns (1982–2016). Pure Appl. Geophys. 2018, 175, 4017–4029. [Google Scholar] [CrossRef]
- Mohamed, B.; Abdallah, A.M.; Alam El-Din, K.; Nagy, H.; Shaltout, M. Inter-annual variability and trends of sea level and sea Surface temperature in the Mediterranean Sea over the last 25 years. Pure Appl. Geophys. 2019, 176, 3787–3810. [Google Scholar] [CrossRef]
- Rivetti, I.; Boero, F.; Fraschetti, S.; Zambianchi, E.; Lionello, P. Anomalies of the upper water column in the Mediterranean Sea. Glob. Planet. Chang. 2017, 151, 68–79. [Google Scholar] [CrossRef]
- Skliris, N. The Mediterranean is getting saltier: From the past to the future. In Mediterranean Cold-Water Corals: Past, Present and Future: Understanding the Deep-Sea Realms of Coral; Coral Reefs of the World; Orejas, C., Jiménez, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 9, Chapter 42; pp. 507–512. [Google Scholar] [CrossRef]
- Sammartino, M.; Aronica, S.; Santoleri, R.; Buongiorno Nardelli, B. Retrieving Mediterranean sea surface salinity distribution and interannual trends from multi-sensor satellite and in situ data. Remote Sens. 2022, 14, 2502. [Google Scholar] [CrossRef]
- Menna, M.; Gačić, M.; Martellucci, R.; Notarstefano, G.; Fedele, G.; Mauri, E.; Gerin, R.; Poulain, P.M. Climatic, decadal, and interannual variability in the upper Layer of the Mediterranean Sea using remotely sensed and in-situ data. Remote Sens. 2022, 14, 1322. [Google Scholar] [CrossRef]
- Fach, B.A.; Orek, H.; Yilmaz, E.; Tezcan, D.; Salihoglu, I.; Salihoglu, B.; Latif, M.A. Water mass variability and Levantine Intermediate Water formation in the Eastern Mediterranean between 2015 and 2017. J. Geophys. Res. Ocean. 2021, 126, e2020JC016472. [Google Scholar] [CrossRef]
- Ozer, T.; Rahav, E.; Gertman, I.; Sisma-Ventura, G.; Silverman, J.; Herut, B. Relationship between thermohaline and biochemical patterns in the levantine upper and intermediate water masses, Southeastern Mediterranean Sea (2013–2021). Front. Mar. Sci. 2022, 9, 958924. [Google Scholar] [CrossRef]
- Mihanović, H.; Vilibić, I.; Šepić, J.; Matić, F.; Ljubešić, Z.; Mauri, E.; Gerin, R.; Notarstefano, G.; Poulain, P.M. Observation, preconditioning and recurrence of exceptionally high salinities in the Adriatic Sea. Front. Mar. Sci. 2021, 8, 672210. [Google Scholar] [CrossRef]
- SeaDataNet. Mediterranean Sea–Temperature and Salinity Observation Collection V2; Istituto Nazionale di Geofisica e Vulcanologia: Rome, Italy, 2015. [Google Scholar] [CrossRef]
- Boyer, T.P.; Baranova, O.K.; Coleman, C.; Garcia, H.E.; Grodsky, A.; Locarnini, R.A.; Mishonov, A.V.; Paver, C.R.; Reagan, J.R.; Seidov, D.; et al. World Ocean Database 2018. Available online: https://www.ncei.noaa.gov/products/world-ocean-database (accessed on 21 August 2024).
- Maillard, C.; Fichaut, M.; Maudire, G.; Coatanoan, C.; Balopoulos, E.; Iona, A.; Lykiardopoulos, A.; Karagevrekis, P.; Beckers, J.; Rixen, M.; et al. A Mediterranean and Black Sea oceanographic database and network. Boll. Geofis. Teor. Ed. Appl. 2005, 46, 329–344. [Google Scholar]
- Szekely, T.; Gourrion, J.; Pouliquen, S.; Reverdin, G. CORA, Coriolis Ocean Dataset for Reanalysis. 2016. Available online: https://www.seanoe.org/data/00351/46219/ (accessed on 21 August 2024).
- Argo. Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). 2022. Available online: https://www.seanoe.org/data/00311/42182/ (accessed on 21 August 2024).
- Schlitzer, R. Ocean Data View User’s Guide Version 5.6.2; Manual, Alfred Wegener Institute: Bremerhaven, Germany, 2022. [Google Scholar]
- Kassis, D.; Krasakopoulou, E.; Korres, G.; Petihakis, G.; Triantafyllou, G.S. Hydrodynamic features of the South Aegean Sea as derived from Argo T/S and dissolved oxygen profiles in the area. Ocean Dyn. 2016, 66, 1449–1466. [Google Scholar] [CrossRef]
- Petihakis, G.; Perivoliotis, L.; Korres, G.; Ballas, D.; Frangoulis, C.; Pagonis, P.; Ntoumas, M.; Pettas, M.; Chalkiopoulos, A.; Sotiropoulou, M.; et al. An integrated open-coastal biogeochemistry, ecosystem and biodiversity observatory of the eastern Mediterranean—The Cretan Sea component of the POSEIDON system. Ocean Sci. 2018, 14, 1223–1245. [Google Scholar] [CrossRef]
- Ntoumas, M.; Perivoliotis, L.; Petihakis, G.; Korres, G.; Frangoulis, C.; Ballas, D.; Pagonis, P.; Sotiropoulou, M.; Pettas, M.; Bourma, E.; et al. The POSEIDON ocean observing system: Technological development and challenges. J. Mar. Sci. Eng. 2022, 10, 1932. [Google Scholar] [CrossRef]
- Bretherton, F.P.; Davis, R.E.; Fandry, C.B. A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep Sea Res. Oceanogr. Abstr. 1976, 23, 559–582. [Google Scholar] [CrossRef]
- Gaillard, F.; Reynaud, T.; Thierry, V.; Kolodziejczyk, N.; Schuckmann, K.v. In situ–based reanalysis of the global ocean temperature and salinity with ISAS: Variability of the heat content and steric height. J. Clim. 2016, 29, 1305–1323. [Google Scholar] [CrossRef]
- Good, S.A.; Martin, M.J.; Rayner, N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Ocean. 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Georgiou, S.; Mantziafou, A.; Sofianos, S.; Gertman, I.; Özsoy, E.; Somot, S.; Vervatis, V. Climate variability and deep water mass characteristics in the Aegean Sea. Atmos. Res. 2015, 152, 146–158. [Google Scholar] [CrossRef]
- Thomson, R.E.; Emery, W.J. Data Analysis Methods in Physical Oceanography, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Escudier, R.; Clementi, E.; Cipollone, A.; Pistoia, J.; Drudi, M.; Grandi, A.; Lyubartsev, V.; Lecci, R.; Aydogdu, A.; Delrosso, D.; et al. A High Resolution Reanalysis for the Mediterranean Sea. Front. Earth Sci. 2021, 9, 702285. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gill, A.E. Atmosphere-Ocean Dynamics; Number 30 in International Geophysics Series; Academic Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Maderich, V.; Ilyin, Y.; Lemeshko, E. Seasonal and interannual variability of the water exchange in the Turkish Straits System estimated by modelling. Mediterr. Mar. Sci. 2015, 16, 444–459. [Google Scholar] [CrossRef]
- García-García, D.; Vigo, M.I.; Trottini, M.; Vargas-Alemañy, J.A.; Sayol, J.M. Hydrological cycle of the Mediterranean-Black Sea system. Clim. Dyn. 2022, 59, 1919–1938. [Google Scholar] [CrossRef]
- Volkov, D.L.; Landerer, F.W. Internal and external forcing of sea level variability in the Black Sea. Clim. Dyn. 2015, 45, 2633–2646. [Google Scholar] [CrossRef]
- Tragou, E.; Petalas, S.; Mamoutos, I. Air–sea interaction: Heat and fresh-water fluxes in the Aegean Sea. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–21. [Google Scholar] [CrossRef]
- Yüce, H. Northern Aegean Water Masses. Estuar. Coast. Shelf Sci. 1995, 41, 325–343. [Google Scholar] [CrossRef]
- Bellacicco, M.; Anagnostou, C.; Falcini, F.; Rinaldi, E.; Tripsanas, K.; Salusti, E. The 1987 Aegean dense water formation: A streamtube investigation by comparing theoretical model results, satellite, field, and numerical data with contourite distribution. Mar. Geol. 2016, 375, 120–133. [Google Scholar] [CrossRef]
- Gertman, I.; Pinardi, N.; Popov, Y.; Hecht, A. Aegean Sea water masses during the early stages of the Eastern Mediterranean climatic transient (1988–90). J. Phys. Oceanogr. 2006, 36, 1841–1859. [Google Scholar] [CrossRef]
- Nittis, K.; Lascaratos, A.; Theocharis, A. Dense water formation in the Aegean Sea: Numerical simulations during the Eastern Mediterranean Transient. J. Geophys. Res. Ocean. 2003, 108, 8120. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Trimble, P.J. The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef]
- Zhang, B.; Cheng, L.; Tan, Z.; Gouretski, V.; Li, F.; Pan, Y.; Yuan, H.; Ren, H.; Reseghetti, F.; Zhu, J.; et al. CODC-v1: A quality-controlled and bias-corrected ocean temperature profile database from 1940–2023. Sci. Data 2024, 11, 666. [Google Scholar] [CrossRef]
- Kokkos, N.; Papadopoulou, A.; Zachopoulos, K.; Zoidou, M.; Beguery, L.; Margirier, F.; Sylaios, G. Hydrography and deep chlorophyll maximum patterns of the Athos Basin and the Thracian Sea continental shelf (North Aegean Sea) combining glider and satellite observations. Cont. Shelf Res. 2023, 262, 105029. [Google Scholar] [CrossRef]
- Theocharis, A.; Balopoulos, E.; Kioroglou, S.; Kontoyiannis, H.; Iona, A. A synthesis of the circulation and hydrography of the South Aegean Sea and the Straits of the Cretan Arc (March 1994–January 1995). Prog. Oceanogr. 1999, 44, 469–509. [Google Scholar] [CrossRef]
- Zervakis, V.; Georgopoulos, D.; Karageorgis, A.P.; Theocharis, A. On the response of the Aegean Sea to climatic variability: A review. Int. J. Climatol. 2004, 24, 1845–1858. [Google Scholar] [CrossRef]
- Zervakis, V.; Korres, G.; Kokkini, Z.; Tragou, E.; Karambas, T. Dardanos: A WERA system for monitoring the Dardanelles outflow in the Aegean. In Proceedings of the 39th CIESM Congress, The Mediterranean Science Commission, Venice, Italy, 10–14 May 2010; p. 201. [Google Scholar]
- Kokkini, Z.; Zervakis, V.; Mamoutos, I.; Potiris, E.; Frangoulis, C.; Kioroglou, S.; Maderich, V.; Psarra, S. Quantification of the surface mixed-layer lateral transports via the use of a HF radar: Application in the North-East Aegean Sea. Cont. Shelf Res. 2017, 149, 17–31. [Google Scholar] [CrossRef]
- Zervakis, V.; Kokkini, Z.; Potiris, E. Estimating mixed layer depth with the use of a coastal high-frequency radar. Cont. Shelf Res. 2017, 149, 4–16. [Google Scholar] [CrossRef]
- EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM 2020). 2020. Available online: https://sextant.ifremer.fr/record/bb6a87dd-e579-4036-abe1-e649cea9881a/ (accessed on 21 August 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potiris, M.; Mamoutos, I.G.; Tragou, E.; Zervakis, V.; Kassis, D.; Ballas, D. Dense Water Formation Variability in the Aegean Sea from 1947 to 2023. Oceans 2024, 5, 611-636. https://doi.org/10.3390/oceans5030035
Potiris M, Mamoutos IG, Tragou E, Zervakis V, Kassis D, Ballas D. Dense Water Formation Variability in the Aegean Sea from 1947 to 2023. Oceans. 2024; 5(3):611-636. https://doi.org/10.3390/oceans5030035
Chicago/Turabian StylePotiris, Manos, Ioannis G. Mamoutos, Elina Tragou, Vassilis Zervakis, Dimitris Kassis, and Dionysios Ballas. 2024. "Dense Water Formation Variability in the Aegean Sea from 1947 to 2023" Oceans 5, no. 3: 611-636. https://doi.org/10.3390/oceans5030035
APA StylePotiris, M., Mamoutos, I. G., Tragou, E., Zervakis, V., Kassis, D., & Ballas, D. (2024). Dense Water Formation Variability in the Aegean Sea from 1947 to 2023. Oceans, 5(3), 611-636. https://doi.org/10.3390/oceans5030035