Previous Issue
Volume 6, April
 
 

Chemistry, Volume 6, Issue 3 (June 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 5346 KiB  
Article
One-Step Ethanol Conversion for 1,3-Butadiene Synthesis over Two-Dimensional VMT-SiO2 Nanomesh Loaded with Magnesium and Copper Oxide
by Yaqi Qin, Kegong Fang, Wenbin Li and Hongfang Jiu
Chemistry 2024, 6(3), 361-375; https://doi.org/10.3390/chemistry6030021 - 26 Apr 2024
Viewed by 156
Abstract
A two-dimensional porous silica nanomesh (VMT-SiO2) was used as a carrier to prepare MgO-CuO-based catalysts and tested for one-step ethanol conversion to 1,3-butadiene. The effects of catalyst composition and different calcination temperatures on the reaction performances of the catalysts were mainly [...] Read more.
A two-dimensional porous silica nanomesh (VMT-SiO2) was used as a carrier to prepare MgO-CuO-based catalysts and tested for one-step ethanol conversion to 1,3-butadiene. The effects of catalyst composition and different calcination temperatures on the reaction performances of the catalysts were mainly investigated. Combining various characterization techniques, such as HRTEM, XRD, FT-IR, and TPD, it was found that the dispersion state of MgO and CuO on the catalyst surface was related to the calcination temperature, which further induced changes in the acid–base properties. A small number of acidic centers and a proper proportion of medium–strong alkaline centers maintained a subtle balance, affecting catalytic performance. A lower total acid/base ratio is more conducive to ethanol conversion and 1,3-butadiene formation. At the same time, the synergistic effect of CuO and MgO promotes the transformation of the intermediate acetaldehyde product, which is the key to ensuring the subsequent aldol condensation and then 1,3-butadiene formation. Among the investigated samples, the CuO/MgO-VMT-SiO2 catalyst calcined at 500 °C exhibited the best catalytic performance, with an impressive ethanol conversion of 47.8% and 1,3-butadiene formation (42.6% selectivity and a space-time yield of 182.0 gC4H6·kgcat−1·h−1). Full article
(This article belongs to the Section Catalysis)
Show Figures

Graphical abstract

16 pages, 5385 KiB  
Article
The Conjugate of Rhein–Artesunate for Inducing Immunogenic Cell Death to Prepare Cancer Vaccine and Suppress Tumor Growth
by Zi-Jian Xu, Wei Wang and Shi-Wen Huang
Chemistry 2024, 6(3), 345-360; https://doi.org/10.3390/chemistry6030020 - 25 Apr 2024
Viewed by 191
Abstract
The conjugate of rhein and artesunate have shown promising effects in inducing immunogenic cell death (ICD) and inhibiting tumor growth. Rhein, a natural anthraquinone derivative found in various medicinal plants such as Rheum palmatum, possesses diverse pharmacological properties including anti-inflammatory and anticancer [...] Read more.
The conjugate of rhein and artesunate have shown promising effects in inducing immunogenic cell death (ICD) and inhibiting tumor growth. Rhein, a natural anthraquinone derivative found in various medicinal plants such as Rheum palmatum, possesses diverse pharmacological properties including anti-inflammatory and anticancer activities. Artesunate, a sesquiterpene lactone extracted from Artemisia annua, exhibits potent antimalarial efficacy and has garnered attention for its potential anticancer properties. Through rational drug design, the conjugation of rhein with artesunate has yielded compounds capable of selectively targeting mitochondria of cancer cells, inducing oxidative stress-mediated ICD, and enhancing the immunogenicity of tumor cells. The conjugate leverages the inherent cytotoxicity of artesunate while incorporating the capability to selectively target the mitochondria of rhein, thereby fostering a special approach to immunotherapy for cancer. Upon accumulation in the mitochondria, these compounds induce the generation of reactive oxygen species (ROS), leading to mitochondrial membrane potential (ΔΨm) reduction and endoplasmic reticulum (ER) stress. Notably, the conjugate exhibits far more potent ICD-inducing properties than their parent compounds. In vivo studies have demonstrated that the vaccine, when treated with the conjugate, effectively suppresses tumor growth. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop