Nanosecond-Laser-Induced Breakdown of Aqueous Colloidal Solutions of Dysprosium Nanoparticles: The Influence of Nanoparticle Concentration on the Breakdown Plasma and the Intensity of Physical and Chemical Processes
Abstract
:1. Introduction
2. Setup, Data and Methods
2.1. Synthesis of Dysprosium Nanoparticles
2.2. Obtaining Time-Resolved Images of the Breakdown Plasma
2.3. Measuring the Intensity of Chemical Processes
3. Results
3.1. Morphology of Dysprosium Nanoparticles
3.2. Analysis of the Time-Resolved Images of Breakdown Plasma
3.3. Chemical Processes during Optical Breakdown of Colloids of Dy Nanoparticles
4. Discussion
4.1. Effect of Dysprosium Nanoparticle Concentrations
4.2. Effect of Laser Fluence
4.3. Effect of Rare Earth Metal Nanoparticles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Křenek, T.; Vála, L.; Kovářík, T.; Medlín, R.; Fajgar, R.; Pola, J.; Jandová, V.; Vavruňková, V.; Pola, M.; Koštejn, M. Novel Perspectives of Laser Ablation in Liquids: The Formation of a High-Pressure Orthorhombic FeS Phase and Absorption of FeS-Derived Colloids on a Porous Surface for Solar-Light Photocatalytic Wastewater Cleaning. Dalt. Trans. 2020, 49, 13262–13275. [Google Scholar] [CrossRef] [PubMed]
- Aiyyzhy, K.O.; Barmina, E.V.; Voronov, V.V.; Shafeev, G.A.; Novikov, G.G.; Uvarov, O.V. Laser Ablation and Fragmentation of Boron in Liquids. Opt. Laser Technol. 2022, 155, 108393. [Google Scholar] [CrossRef]
- Frias Batista, L.M.; Nag, A.; Meader, V.K.; Tibbetts, K.M. Generation of Nanomaterials by Reactive Laser-Synthesis in Liquid. Sci. China Phys. Mech. Astron. 2022, 65, 274202. [Google Scholar] [CrossRef]
- Yogesh, G.K.; Shukla, S.; Sastikumar, D.; Koinkar, P. Progress in Pulsed Laser Ablation in Liquid (PLAL) Technique for the Synthesis of Carbon Nanomaterials: A Review. Appl. Phys. A 2021, 127, 810. [Google Scholar] [CrossRef]
- Aiyyzhy, K.O.; Barmina, E.V.; Rakov, I.I.; Voronov, V.V.; Shafeev, G.A. Laser Synthesis of Ruby and Its Nanoparticles for Photo-Conversion of Solar Spectrum. Laser Phys. Lett. 2023, 20, 46001. [Google Scholar] [CrossRef]
- Amoruso, S.; Bruzzese, R.; Spinelli, N.; Velotta, R. Characterization of Laser–Ablation Plasmas. J. Phys. B At. Mol. Opt. Phys. 1999, 32, R131–R172. [Google Scholar] [CrossRef]
- Dell’Aglio, M.; De Giacomo, A. Plasma Charging Effect on the Nanoparticles Releasing from the Cavitation Bubble to the Solution during Nanosecond Pulsed Laser Ablation in Liquid. Appl. Surf. Sci. 2020, 515, 146031. [Google Scholar] [CrossRef]
- Vanraes, P.; Bogaerts, A. The Essential Role of the Plasma Sheath in Plasma–Liquid Interaction and Its Applications—A Perspective. J. Appl. Phys. 2021, 129, 220901. [Google Scholar] [CrossRef]
- Anderson, C.E.; Cha, N.R.; Lindsay, A.D.; Clark, D.S.; Graves, D.B. The Role of Interfacial Reactions in Determining Plasma–Liquid Chemistry. Plasma Chem. Plasma Process. 2016, 36, 1393–1415. [Google Scholar] [CrossRef]
- Chemin, A.; Fawaz, M.W.; Amans, D. Investigation of the Blast Pressure Following Laser Ablation at a Solid–Fluid Interface Using Shock Waves Dynamics in Air and in Water. Appl. Surf. Sci. 2022, 574, 151592. [Google Scholar] [CrossRef]
- Spellauge, M.; Tack, M.; Streubel, R.; Miertz, M.; Exner, K.S.; Reichenberger, S.; Barcikowski, S.; Huber, H.P.; Ziefuss, A.R. Photomechanical Laser Fragmentation of IrO2 Microparticles for the Synthesis of Active and Redox-Sensitive Colloidal Nanoclusters. Small 2023, 19, 2206485. [Google Scholar] [CrossRef] [PubMed]
- Dell’Aglio, M.; Gaudiuso, R.; De Pascale, O.; De Giacomo, A. Mechanisms and Processes of Pulsed Laser Ablation in Liquids during Nanoparticle Production. Appl. Surf. Sci. 2015, 348, 4–9. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Samokhvalov, A.A.; Nastulyavichus, A.A.; Saraeva, I.N.; Mikhailovskii, V.Y.; Ionin, A.A.; Veiko, V.P. Nanosecond-Laser Generation of Nanoparticles in Liquids: From Ablation through Bubble Dynamics to Nanoparticle Yield. Materials 2019, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Jelenčič, M.; Orthaber, U.; Mur, J.; Petelin, J. Evidence of Laser-Induced Nanobubble Formation Mechanism in Water. Ultrason. Sonochem. 2023, 99, 106537. [Google Scholar] [CrossRef] [PubMed]
- Barmina, E.V.; Simakin, A.V.; Shafeev, G.A. Hydrogen Emission under Laser Exposure of Colloidal Solutions of Nanoparticles. Chem. Phys. Lett. 2016, 655, 35–38. [Google Scholar] [CrossRef]
- Batista, L.M.F.; Moody, M.; Weththasingha, C.; Kaplan, E.; Faruque, I.; El-Shall, M.S.; Tibbetts, K.M. Understanding Photochemical Pathways of Laser-Induced Metal Ion Reduction through Byproduct Analysis. Phys. Chem. Chem. Phys. 2023, 25, 18844–18853. [Google Scholar] [CrossRef] [PubMed]
- Itina, T.E. On Nanoparticle Formation by Laser Ablation in Liquids. J. Phys. Chem. C 2011, 115, 5044–5048. [Google Scholar] [CrossRef]
- Subhan, A.; Mourad, A.-H.I.; Al-Douri, Y. Influence of Laser Process Parameters, Liquid Medium, and External Field on the Synthesis of Colloidal Metal Nanoparticles Using Pulsed Laser Ablation in Liquid: A Review. Nanomaterials 2022, 12, 2144. [Google Scholar] [CrossRef]
- Zhang, K.; Ivanov, D.S.; Ganeev, R.A.; Boltaev, G.S.; Krishnendu, P.S.; Singh, S.C.; Garcia, M.E.; Zavestovskaya, I.N.; Guo, C. Pulse Duration and Wavelength Effects of Laser Ablation on the Oxidation, Hydrolysis, and Aging of Aluminum Nanoparticles in Water. Nanomaterials 2019, 9, 767. [Google Scholar] [CrossRef]
- Kanitz, A.; Hoppius, J.S.; Gurevich, E.L.; Ostendorf, A. Influence of the Liquid on Femtosecond Laser Ablation of Iron. Phys. Procedia 2016, 83, 114–122. [Google Scholar] [CrossRef]
- Simakin, A.V.; Astashev, M.E.; Baimler, I.V.; Uvarov, O.V.; Voronov, V.V.; Vedunova, M.V.; Sevost’yanov, M.A.; Belosludtsev, K.N.; Gudkov, S.V.; Sevost’Yanov, M.A.; et al. The Effect of Gold Nanoparticle Concentration and Laser Fluence on the Laser-Induced Water Decomposition. J. Phys. Chem. B 2019, 123, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.E.; Mao, X.L.; Liu, H.C.; Yoo, J.H.; Mao, S.S. Time-Resolved Plasma Diagnostics and Mass Removal during Single-Pulse Laser Ablation. Appl. Phys. A 1999, 69, S887–S894. [Google Scholar] [CrossRef]
- Simakin, A.V.; Baimler, I.V.; Baryshev, A.S.; Dikovskaya, A.O.; Gudkov, S.V. The Influence of Gadolinium Oxide Nanoparticles Concentration on the Chemical and Physical Processes Intensity during Laser-Induced Breakdown of Aqueous Solutions. Photonics 2023, 10, 784. [Google Scholar] [CrossRef]
- Baimler, I.V.; Simakin, A.V.; Gudkov, S.V. Investigation of the Laser-Induced Breakdown Plasma, Acoustic Vibrations and Dissociation Processes of Water Molecules Caused by Laser Breakdown of Colloidal Solutions Containing Ni Nanoparticles. Plasma Sources Sci. Technol. 2021, 30, 125015. [Google Scholar] [CrossRef]
- Hertel, G.R. Surface Ionization. III. The First Ionization Potentials of the Lanthanides. J. Chem. Phys. 1968, 48, 2053–2058. [Google Scholar] [CrossRef]
- Loock, H.P.; Beaty, L.M.; Simard, B. Reassessment of the First Ionization Potentials of Copper, Silver, and Gold. Phys. Rev. A 1999, 59, 873–875. [Google Scholar] [CrossRef]
- Baimler, I.V.; Lisitsyn, A.B.; Gudkov, S.V. Influence of Gases Dissolved in Water on the Process of Optical Breakdown of Aqueous Solutions of Cu Nanoparticles. Front. Phys. 2020, 8, 6222775. [Google Scholar] [CrossRef]
- Chernikov, A.V.; Bruskov, V.I.; Gudkov, S.V. Heat-Induced Formation of Nitrogen Oxides in Water. J. Biol. Phys. 2013, 39, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Sevostyanov, M.A.; Kolmakov, A.G.; Sergiyenko, K.V.; Kaplan, M.A.; Baikin, A.S.; Gudkov, S.V. Mechanical, Physical–Chemical and Biological Properties of the New Ti–30Nb–13Ta–5Zr Alloy. J. Mater. Sci. 2020, 55, 14516–14529. [Google Scholar] [CrossRef]
- Dittrich, S.; Barcikowski, S.; Gökce, B. Plasma and Nanoparticle Shielding during Pulsed Laser Ablation in Liquids Cause Ablation Efficiency Decrease. Opto-Electron. Adv. 2021, 4, 200072. [Google Scholar] [CrossRef]
- Dittrich, S.; Spellauge, M.; Barcikowski, S.; Huber, H.P.; Gökce, B. Time Resolved Studies Reveal the Origin of the Unparalleled High Efficiency of One Nanosecond Laser Ablation in Liquids. Opto-Electron. Adv. 2022, 5, 210051–210053. [Google Scholar] [CrossRef]
- Malyutin, A.A.; Podvyaznikov, V.A.; Chevokin, V.K. Density Jumps in the Plasma of a Nanosecond Laser-Induced Spark and Their Dynamics. Quantum Electron. 2011, 41, 38–42. [Google Scholar] [CrossRef]
- Baimler, I.V.; Chevokin, V.K.; Podvyaznikov, V.A.; Gudkov, S.V. Case Report: Investigation of the Time Evolution of Optical Breakdown Plasma During Irradiation of Aqueous Solutions of Fe Nanoparticles. Front. Phys. 2021, 9, 641899. [Google Scholar] [CrossRef]
- Bundschuh, T.; Hauser, W.; Kim, J.I.; Knopp, R.; Scherbaum, F.J. Determination of Colloid Size by 2-D Optical Detection of Laser Induced Plasma. Coll. Surf. A Physicochem. Eng. Asp. 2001, 180, 285–293. [Google Scholar] [CrossRef]
- Kim, J.W.; Son, J.A.; Yun, J.I.; Jung, E.C.; Park, S.H.; Choi, J.G. Analysis of Laser-Induced Breakdown Images Measuring the Sizes of Mixed Aquatic Nanoparticles. Chem. Phys. Lett. 2008, 462, 75–77. [Google Scholar] [CrossRef]
- Jung, E.C.; Yun, J.I.; Kim, J.I.; Bouby, M.; Geckeis, H.; Park, Y.J.; Park, K.K.; Fanghänel, T.; Kim, W.H. Measurement of Bimodal Size Distribution of Nanoparticles by Using the Spatial Distribution of Laser-Induced Plasma. Appl. Phys. B Lasers Opt. 2007, 87, 497–502. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Astashev, M.E.; Baimler, I.V.; Uvarov, O.V.; Voronov, V.V.; Simakin, A.V. Laser-Induced Optical Breakdown of an Aqueous Colloidal Solution Containing Terbium Nanoparticles: The Effect of Oxidation of Nanoparticles. J. Phys. Chem. B 2022, 126, 5678–5688. [Google Scholar] [CrossRef] [PubMed]
- Kudryashov, S.I.; Zvorykin, V.D. Microscale Nanosecond Laser-Induced Optical Breakdown in Water. Phys. Rev. E 2008, 78, 036404. [Google Scholar] [CrossRef]
- Noack, J.; Vogel, A. Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density. IEEE J. Quantum Electron. 1999, 35, 1156–1167. [Google Scholar] [CrossRef]
- Koppenol, W.H. The Centennial of the Fenton Reaction. Free Radic. Biol. Med. 1993, 15, 645–651. [Google Scholar] [CrossRef]
- Martin, J.; Mladěnka, P.; Saso, L.; Kostova, I. Lanthanide (III) Complexes Are More Active Inhibitors of the Fenton Reaction than Pure Ligands. Redox Rep. 2016, 21, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Heckert, E.G.; Seal, S.; Self, W.T. Fenton-like Reaction Catalyzed by the Rare Earth Inner Transition Metal Cerium. Environ. Sci. Technol. 2008, 42, 5014–5019. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Aneggi, E.; Goi, D. Catalytic Activity of Metals in Heterogeneous Fenton-like Oxidation of Wastewater Contaminants: A Review. Environ. Chem. Lett. 2021, 19, 2405–2424. [Google Scholar] [CrossRef]
- Haber, F.; Weiss, J. Über die Katalyse des Hydroperoxydes. Naturwissensch./Sci. Nat. 1932, 20, 948–950. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baimler, I.V.; Baryshev, A.S.; Dikovskaya, A.O.; Chevokin, V.K.; Uvarov, O.V.; Astashev, M.E.; Gudkov, S.V.; Simakin, A.V. Nanosecond-Laser-Induced Breakdown of Aqueous Colloidal Solutions of Dysprosium Nanoparticles: The Influence of Nanoparticle Concentration on the Breakdown Plasma and the Intensity of Physical and Chemical Processes. Physics 2024, 6, 529-543. https://doi.org/10.3390/physics6020035
Baimler IV, Baryshev AS, Dikovskaya AO, Chevokin VK, Uvarov OV, Astashev ME, Gudkov SV, Simakin AV. Nanosecond-Laser-Induced Breakdown of Aqueous Colloidal Solutions of Dysprosium Nanoparticles: The Influence of Nanoparticle Concentration on the Breakdown Plasma and the Intensity of Physical and Chemical Processes. Physics. 2024; 6(2):529-543. https://doi.org/10.3390/physics6020035
Chicago/Turabian StyleBaimler, Ilya V., Alexey S. Baryshev, Anastasiya O. Dikovskaya, Viktor K. Chevokin, Oleg V. Uvarov, Maxim E. Astashev, Sergey V. Gudkov, and Aleksander V. Simakin. 2024. "Nanosecond-Laser-Induced Breakdown of Aqueous Colloidal Solutions of Dysprosium Nanoparticles: The Influence of Nanoparticle Concentration on the Breakdown Plasma and the Intensity of Physical and Chemical Processes" Physics 6, no. 2: 529-543. https://doi.org/10.3390/physics6020035
APA StyleBaimler, I. V., Baryshev, A. S., Dikovskaya, A. O., Chevokin, V. K., Uvarov, O. V., Astashev, M. E., Gudkov, S. V., & Simakin, A. V. (2024). Nanosecond-Laser-Induced Breakdown of Aqueous Colloidal Solutions of Dysprosium Nanoparticles: The Influence of Nanoparticle Concentration on the Breakdown Plasma and the Intensity of Physical and Chemical Processes. Physics, 6(2), 529-543. https://doi.org/10.3390/physics6020035