Towards Optimal Planning for Green, Smart, and Semantically Enriched Cultural Tours
Abstract
:1. Introduction
- Transition to climate neutrality and pollution reduction: the Paris Agreement dictates that net-zero greenhouse gas (GHG) emissions must decrease by 2050 to limit global temperature by at least 2 degrees Celsius [6].
- Technology-enhance tourist experience: traditional tourism and cultural tourism are often associated with older and retired travelers [9], affecting the selling proposition, communication, and market activities.
- Leverage tourism management: e-tourism guarantees a win–win methodology for all involved persons [9].
2. Background Knowledge and Related Work
2.1. Semantic Trajectories Modeling and Analytics
2.2. KG-Based Recommendations of Cultural Tours
2.3. Visitor-Tailored Optimized Tours
2.4. Related Work
3. The OptiTours Approach
3.1. Analysis and Requirements Specification
3.1.1. Enable a Smart, Green, and Comfortable Tourism
3.1.2. Enhance Tourism Experience
3.1.3. Deliver Smart, Green, and Comfort Cultural Tours
3.1.4. Deliver an AI-Based Recommendation System
3.2. Scientific and Social Impact
3.2.1. Sustainable Tourism
3.2.2. Tourism Management Education
3.2.3. Tourism Industry Knowledge
3.2.4. Sustainable Competitiveness
3.2.5. Reduction of Traffic Congestion
3.2.6. Cultural Activities and Values
3.3. OptiTours Proposed Architectural Design
- Smart city tours: cost- and time-efficient tours, saving time and money by recommending shorter and cheaper tours.
- Green city tours: energy (car fuel)- and pollution (CO2, noise)-efficient tours minimizing fuel consumption and air/noise pollution by recommending the greenest tour.
- Comfort city tours: comfort-efficient tours that will not disturb visitors’ comfort, based on weather or/and traffic conditions.
- (a)
- Visitor. This layer manages all data and information provided for the visitor. These data consist of specific information, such as visitor’s routing starting point, budget, and available time to be exploited, as input features for the optimization algorithm. In addition, this layermanages profiling information that is exploited to update the dynamic visitor’s profile.
- (b)
- Data. This layer provides all available data and information retrieved by various sources such as public open datasets and the web, and is exploited for the design and creation of semantic models and semantic data annotations. Furthermore, these data are used as a key feature, along with the visitor data, for mobility modeling, the RS, etc.
- (c)
- Semantics layer. This layer is the core of the system’s metadata. All available information is transformed into valuable knowledge (STaKG creation), while providing all the necessary analysis and visual analytics. Furthermore, the developed KGs are parsed and transformed into a logic-based representation language to be used by the services layer.
- (d)
- Services layer. This layer includes all the applications developed to support optimal routing (planning optimization) by combining all the processed data, information, and knowledge. All information coming from the data and semantics layers is processed to this layer, delivering input for the visualization layer.
- (e)
- Visualization layer. This layer provides all the information for visitors to start their smart, green, and comfortable tour. The visitors are also provided with cost, means of transportation, and alternative routes to choose from.
3.4. OptiTours Main Functionalities
3.4.1. Semantic Modeling of OptiTours Trip Data
3.4.2. Semantic Annotation and Integration of OptiTours Data
3.4.3. STaKG Creation and Reasoning Support
3.4.4. STaKG Visualization and Analytics
3.4.5. KG Translation to Logic-Based Language Representation
3.4.6. Mobility Simulation Modeling
3.4.7. Multidimensional Optimized Planning
3.4.8. Visitors’ Dynamic Profiling Management
3.4.9. STaKG-Based Recommendation/Ranking
4. Proposed Implementation and Evaluation Approach
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AR/VR | Augmented and virtual reality |
CAO | Cognitive adaptive optimization |
CNTA | China National Tourism Administratio |
EU | European Union |
GHG | Greenhouse gas |
ICT | Information and communications technology |
KG | Knowledge graphs |
LOD | Linked open data |
OptiTours | Optimized planning for green, smart, and semantically enriched cultural tours |
POI | Point of interest |
RDF | Resource Description Framework |
RL | Reinforcement learning |
RRF | Resilience Ffcility |
RS | Recommender system |
STaKG | STs as KGs |
ST | Semantic trajectory |
SotA | State of the art |
TRAP | Traffic-related air pollution |
References
- Global Tourism Industry—Statistics and Facts, Statista. Available online: https://www.statista.com/topics/962/global-tourism/ (accessed on 11 April 2022).
- Sun, Y.Y.; Li, M.; Lenzen, M.; Malik, A.; Pomponi, F. Tourism, job vulnerability and income inequality during the COVID-19 pandemic: A global perspective. Ann. Tour. Res. Empir. Insights 2022, 3, 100046. [Google Scholar] [CrossRef]
- World Travel and Tourism Council (WTTC), Travel and Tourism Representative Council. Available online: https://wttc.org/ (accessed on 11 April 2022).
- Recovery and Resilience Facility, European Commission. Available online: https://ec.europa.eu/info/business-economy-euro/recovery-coronavirus/recovery-and-resilience-facility_en (accessed on 11 April 2022).
- REPowerEU. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3131 (accessed on 11 April 2022).
- Paris Temperature Goal, Climate Action Tracker. Available online: https://climateactiontracker.org/methodology/paris-temperature-goal/ (accessed on 11 April 2022).
- Zhu, Y.; Fan, Y.; Xu, Y.; Xu, H.; Wu, C.; Wang, T.; Zhao, M.; Liu, L.; Cai, J.; Yuan, N.; et al. Short-term exposure to traffic-related air pollution and STEMI events: Insights into STEMI onset and related cardiac impairment. Sci. Total Environ. 2022, 827, 154210. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Chen, H.; Oliver, B.G. The health effects of traffic-related air pollution: A review focused the health effects of going green. Chemosphere 2022, 289, 133082. [Google Scholar] [CrossRef] [PubMed]
- Hamid, R.A.; Albahri, A.S.; Alwan, J.K.; Al-Qaysi, Z.; Albahri, O.S.; Zaidan, A.; Alnoor, A.; Alamoodi, A.H.; Zaidan, B. How smart is e-tourism? A systematic review of smart tourism recommendation system applying data management. Comput. Sci. Rev. 2021, 39, 100337. [Google Scholar] [CrossRef]
- CNTO (China National Tourism Administration)—People’s Republic of China. Available online: http://www.cnto.com.sg/ (accessed on 11 April 2022).
- Turoń, K. Social barriers and transportation social exclusion issues in creating sustainable car-sharing systems. Entrep. Sustain. Issues 2021, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Andrienko, G.L.; Andrienko, N.V.; Fuchs, G.; Raimond, A.M.O.; Symanzik, J.; Ziemlicki, C. Extracting Semantics of Individual Places from Movement Data by Analyzing Temporal Patterns of Visits. In Proceedings of the COMP@ SIGSPATIAL, Orlando, FL, USA, 5–8 November 2013; pp. 9–15. [Google Scholar]
- Maarala, A.I.; Su, X.; Riekki, J. Semantic reasoning for context-aware Internet of Things applications. IEEE Internet Things J. 2016, 4, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Parent, C.; Spaccapietra, S.; Renso, C.; Andrienko, G.; Andrienko, N.; Bogorny, V.; Damiani, M.L.; Gkoulalas-Divanis, A.; Macedo, J.; Pelekis, N.; et al. Semantic trajectories modeling and analysis. ACM Comput. Surv. (CSUR) 2013, 45, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Nanni, M.; Trasarti, R.; Renso, C.; Giannotti, F.; Pedreschi, D. Advanced knowledge discovery on movement data with the GeoPKDD system. In Proceedings of the 13th International Conference on Extending Database Technology, Lausanne, Switzerland, 22–26 March 2010; pp. 693–696. [Google Scholar]
- Angelis, S.; Kotis, K.; Spiliotopoulos, D. Semantic Trajectory Analytics and Recommender Systems in Cultural Spaces. Big Data Cogn. Comput. 2021, 5, 80. [Google Scholar] [CrossRef]
- Karim, L.; Boulmakoul, A.; Zeitouni, K. From Raw Pedestrian Trajectories to Semantic Graph Structured Model—Towards an end-to-end spatiotemporal analytics framework. Procedia Comput. Sci. 2021, 184, 60–67. [Google Scholar] [CrossRef]
- Karatzoglou, A.; Schnell, N.; Beigl, M. A convolutional neural network approach for modeling semantic trajectories and predicting future locations. In Proceedings of the International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 61–72. [Google Scholar]
- Al-Dohuki, S.; Wu, Y.; Kamw, F.; Yang, J.; Li, X.; Zhao, Y.; Ye, X.; Chen, W.; Ma, C.; Wang, F. Semantictraj: A new approach to interacting with massive taxi trajectories. IEEE Trans. Vis. Comput. Graph. 2016, 23, 11–20. [Google Scholar] [CrossRef]
- Soularidis, A.; Kotis, K. Semantic Modeling and Reconstruction of Drones’ Trajectories. In Proceedings of the The Semantic Web: ESWC 2022 Satellite Events: Hersonissos, Crete, Greece, 29 May–2 June 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 158–162. [Google Scholar]
- Santipantakis, G.M.; Glenis, A.; Patroumpas, K.; Vlachou, A.; Doulkeridis, C.; Vouros, G.A.; Pelekis, N.; Theodoridis, Y. SPARTAN: Semantic integration of big spatio-temporal data from streaming and archival sources. Future Gener. Comput. Syst. 2020, 110, 540–555. [Google Scholar] [CrossRef] [Green Version]
- Chicaiza, J.; Valdiviezo-Diaz, P. A comprehensive survey of knowledge graph-based recommender systems: Technologies, development, and contributions. Information 2021, 12, 232. [Google Scholar] [CrossRef]
- Cardoso, P.J.; Rodrigues, J.M.; Pereira, J.; Nogin, S.; Lessa, J.; Ramos, C.M.; Bajireanu, R.; Gomes, M.; Bica, P. Cultural heritage visits supported on visitors’ preferences and mobile devices. Univers. Access Inf. Soc. 2020, 19, 499–513. [Google Scholar] [CrossRef]
- Hong, M.; An, S.; Akerkar, R.; Camacho, D.; Jung, J.J. Cross-cultural contextualisation for recommender systems. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Hong, M.; Jung, J.J.; Piccialli, F.; Chianese, A. Social recommendation service for cultural heritage. Pers. Ubiquitous Comput. 2017, 21, 191–201. [Google Scholar] [CrossRef]
- Minkov, E.; Kahanov, K.; Kuflik, T. Graph-based recommendation integrating rating history and domain knowledge: Application to on-site guidance of museum visitors. J. Assoc. Inf. Sci. Technol. 2017, 68, 1911–1924. [Google Scholar] [CrossRef]
- Gao, Q.; Zhou, F.; Zhang, K.; Zhang, F.; Trajcevski, G. Adversarial human trajectory learning for trip recommendation. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef]
- Medio, C.D.; Oriolo, G. Robot obstacle avoidance using vortex fields. In Advances in Robot Kinematics; Springer: Berlin/Heidelberg, Germany, 1991; pp. 227–235. [Google Scholar]
- Barraquand, J.; Langlois, B.; Latombe, J.C. Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man Cybern. 1992, 22, 224–241. [Google Scholar] [CrossRef]
- Pohl, I. Heuristic search viewed as path finding in a graph. Artif. Intell. 1970, 1, 193–204. [Google Scholar] [CrossRef]
- Gavalas, D.; El Choubassi, M.; Crespo, Á.G.; Bellavista, P. Special issue on Mobile and Pervasive Applications in Tourism. Pervasive Mob. Comput. 2015, 18, 1–3. [Google Scholar] [CrossRef]
- Fathy, G.M.; Hassan, H.A.; Sheta, W.M.; Bahgat, R. Efficient framework for mobile walkthrough application. Pervasive Mob. Comput. 2015, 18, 40–54. [Google Scholar] [CrossRef]
- Phithakkitnukoon, S.; Horanont, T.; Witayangkurn, A.; Siri, R.; Sekimoto, Y.; Shibasaki, R. Understanding tourist behavior using large-scale mobile sensing approach: A case study of mobile phone users in Japan. Pervasive Mob. Comput. 2015, 18, 18–39. [Google Scholar] [CrossRef]
- Ramos-Soler, I.; Martínez-Sala, A.M.; Campillo-Alhama, C. ICT and the Sustainability of World Heritage Sites. Analysis of Senior Citizens’ Use of Tourism Apps. Sustainability 2019, 11, 3203. [Google Scholar] [CrossRef] [Green Version]
- Gössling, S. Tourism, technology and ICT: A critical review of affordances and concessions. J. Sustain. Tour. 2021, 29, 733–750. [Google Scholar] [CrossRef]
- Glebova, E.; Lewicky, W. Smart cities’ digital transformation. In Buhalis, Taheri, Rahimi, Smart Cities and Tourism, Co-Creating Experiences, Challenges and Opportunities; Goodfellow Publishers: Oxford, England, 2022. [Google Scholar] [CrossRef]
- Punla, C.S.; Farro, R.C. Are we there yet?: An analysis of the competencies of BEED graduates of BPSU-DC. Int. Multidiscip. Res. J. 2022, 4, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Hassannia, R.; Vatankhah Barenji, A.; Li, Z.; Alipour, H. Web-Based Recommendation System for Smart Tourism: Multiagent Technology. Sustainability 2019, 11, 323. [Google Scholar] [CrossRef] [Green Version]
- Hidaka, M.; Kanaya, Y.; Kawanaka, S.; Matsuda, Y.; Nakamura, Y.; Suwa, H.; Fujimoto, M.; Arakawa, Y.; Yasumoto, K. On-site Trip Planning Support System Based on Dynamic Information on Tourism Spots. Smart Cities 2020, 3, 212–231. [Google Scholar] [CrossRef]
- Škare, M.; Soriano, D.R.; Porada-Rochoń, M. Impact of COVID-19 on the travel and tourism industry. Technol. Forecast. Soc. Chang. 2021, 163, 120469. [Google Scholar] [CrossRef]
- Moraitou, T.; Angelis, S.; Kotis, K.; Caridakis, G.; Ermioni Eirini, P.; Nikolaos, S. Towards Engineering Drones’ Semantic Trajectories as Knowledge Graphs. In Proceedings of the 5th International Workshop on Geospatial Linked Data 2022, co-located with 19th Extended Semantic Web Conference (ESWC 2022), Hersonissos, Greece, 30 May 2022; ceur-ws.org: Hersonissos, Greece, 2022; pp. 31–36. [Google Scholar]
- Pándy, M.; Ying, R.; Corso, G.; Velickovic, P.; Leskovec, J.; Liò, P. Learning graph search heuristics. In Proceedings of the Physical Reasoning and Inductive Biases for the Real WorldWorkshop at NeurIPS, 2021; Virtual-only Conference. Volume 2021. [Google Scholar]
- Kosmatopoulos, E.B. An adaptive optimization scheme with satisfactory transient performance. Automatica 2009, 45, 716–723. [Google Scholar] [CrossRef]
- Turoń, K.; Czech, P.; Juzek, M. The concept of a walkable city as an alternative form of urban mobility. Sci. J. Sil. Univ. Technol 2017, 95, 223–230. [Google Scholar] [CrossRef]
- Ceder, A. Urban mobility and public transport: Future perspectives and review. Int. J. Urban Sci. 2021, 25, 455–479. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotis, K.; Dimara, A.; Angelis, S.; Michailidis, P.; Michailidis, I.; Anagnostopoulos, C.-N.; Krinidis, S.; Kosmatopoulos, E. Towards Optimal Planning for Green, Smart, and Semantically Enriched Cultural Tours. Smart Cities 2023, 6, 123-136. https://doi.org/10.3390/smartcities6010007
Kotis K, Dimara A, Angelis S, Michailidis P, Michailidis I, Anagnostopoulos C-N, Krinidis S, Kosmatopoulos E. Towards Optimal Planning for Green, Smart, and Semantically Enriched Cultural Tours. Smart Cities. 2023; 6(1):123-136. https://doi.org/10.3390/smartcities6010007
Chicago/Turabian StyleKotis, Konstantinos, Asimina Dimara, Sotirios Angelis, Panagiotis Michailidis, Iakovos Michailidis, Christos-Nikolaos Anagnostopoulos, Stelios Krinidis, and Elias Kosmatopoulos. 2023. "Towards Optimal Planning for Green, Smart, and Semantically Enriched Cultural Tours" Smart Cities 6, no. 1: 123-136. https://doi.org/10.3390/smartcities6010007
APA StyleKotis, K., Dimara, A., Angelis, S., Michailidis, P., Michailidis, I., Anagnostopoulos, C. -N., Krinidis, S., & Kosmatopoulos, E. (2023). Towards Optimal Planning for Green, Smart, and Semantically Enriched Cultural Tours. Smart Cities, 6(1), 123-136. https://doi.org/10.3390/smartcities6010007