Modeling a Digitally Enhanced Real World Inspired by Agential Realism—Exploring Opportunities and Challenges
Abstract
:1. Introduction
- (1).
- The V/R twin model includes the virtualizing and reframing patterns to consider new services to extend the real world. The real world can be extended by reframing the real world with the patterns. In particular, the reframing patterns enable us to consider augmenting the real world with advanced technologies such as mixed-reality technology and robotics technology.
- (2).
- The study presents an analysis of potential opportunities and the methods of using the V/R twin model, from multiple perspectives. We extracts diverse opportunities to use the virtualizing and reframing patterns, and present an enhanced conceptual-model which flexibly extends the real world.
2. Digital Twin
3. Virtualizing/Reframing Twin Model
3.1. An Overview of the Proposed Model
3.2. Virtualizing Patterns
3.3. Reframing Patterns
4. Using the Virtualizing/Reframing Twin Model
4.1. Analyzing Existing Digital Services with the V/R Twin Model
4.1.1. Overview
4.1.2. Case-Study 1: Google Map
4.1.3. Case-Study 2: CollectiveEyes
4.1.4. Discussing More Opportunities
4.2. Opportunities Analysis of Virtualizing and Reframing-Patterns
4.2.1. Methodology
4.2.2. Virtualizing-Patterns
4.2.3. Reframing-Patterns
4.2.4. Discussing Opportunities of Virtualizing- and Reframing-Patterns
4.3. Developing Programmable City-Services Based on the V/R Twin Model
4.3.1. Overview
4.3.2. In Situ Programmable-Composite
4.3.3. An Actual Use-Case of In Situ Programmable-Composite
4.3.4. Investigating Alternative Use-Cases
5. Related Work
6. Conclusions: Future Opportunities and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schallmo, D.R.A.; Williams, C.A. Digital Transformation Now! Guiding the Successful Digitalization of Your Business Model; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kimura, R.; Nakajima, T. Digitally Enhancing Society through Structuralism: Virtualizing Collective Human Eyesight and Hearing Capabilities as a Case Study. In Distributed, Ambient and Pervasive Interactions; Streitz, N., Konomi, S., Eds.; HCII 2020. LNCS; Springer: Cham, Switzerland, 2020; Volume 12203. [Google Scholar]
- Swan, M. The Quantified Self: Fundamental Disruption in Big Data Science and Biological Discovery. Big Data 2013, 1, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Abowd, D.G. The Internet of Materials: A Vision for Computational Materials. IEEE Pervasive Comput. 2020, 19, 56–62. [Google Scholar] [CrossRef]
- Farsi, M.; Daneshkhah, A.; Hosseinian-Far, A.; Jahankhani, H. Digital Twin Technologies and Smart Cities; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Negri, E.; Fumagalli, L.; Macchi, M. A review of the roles of digital twin in cps-based production systems. In Proceedings of the 27th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM2017, Modena, Italy, 27–30 June 2017; Volume 11, pp. 939–948. [Google Scholar]
- Slob, N.; Hurst, W. Digital Twins and Industry 4.0 Technologies for Agricultural Greenhouses. Smart Cities 2022, 5, 1179–1192. [Google Scholar] [CrossRef]
- Petrova-Antonova, D.; Ilieva, S. Digital Twin Modeling of Smart Cities. In Human Interaction, Emerging Technologies and Future Applications III; Ahram, T., Taiar, R., Langlois, K., Choplin, A., Eds.; IHIET 2020. Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2021; Volume 1253. [Google Scholar] [CrossRef]
- Deren, L.; Wenbo, Y.; Zhenfeng, S. Smart city based on digital twins. Comput. Urban Sci. 2021, 1, 4. [Google Scholar] [CrossRef]
- Barad, K. Posthumanist performativity: Toward an understanding of how matter comes to matter. In Belief, Bodies, and Being: Feminist Reflections on Embodiment; Orr, D., Ed.; Rowman & Littlefield Publishers: Lanham, MD, USA, 2003; Volume 28, pp. 801–831. [Google Scholar]
- Barad, K. Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning; Duke University Press: Durham, NC, USA, 2007. [Google Scholar]
- Addlesee, M.; Curwen, R.W.; Hodges, S.; Newman, J.; Steggles, P.; Ward, A.; Hopper, A. Implementing a Sentient Computing System. IEEE Comput. 2001, 34, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.K.; Abowd, G.D.; Salber, D. A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. Hum.–Comput. Interact. 2001, 16, 97–166. [Google Scholar] [CrossRef]
- Weiser, M. The Computer for the 21st Century. Sci. Am. 1991, 265, 94–104. [Google Scholar] [CrossRef]
- Greaves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems; Kahlen, F.J., Flumerfelt, S., Alves, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Polyvyanyy, A.; Smirnov, S.; Weske, M. Business Process Model Abstraction. In Handbook on Business Process Management; Vom Brocke, J., Rosemann, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Shafto, M.; Conroy, M.; Doyle, R.; Glaessgen, E.; Kemp, C.; Lemoigne, J.; Wang, L. DRAFT Modeling, Simulation, Information Technology & Processing Roadmap; National Aeronautics and Space Administration: Washington, DC, USA, 2010. [Google Scholar]
- Greaves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC Pap. OnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Bao, J.; Guo, D.; Li, J.; Zhang, J. The modelling and operations for the digital twin in the context of manufacturing. Enterp. Inf. Syst. 2019, 13, 534–556. [Google Scholar] [CrossRef]
- Virtual Helsinki. Available online: https://www.virtualhelsinki.fi/ (accessed on 27 December 2022).
- Cruickshank, L.; Trivedi, N. Beyond Human-Centred Design: Supporting a New Materiality in the Internet of Things, or How to Design When a Toaster is One of Your Users. Des. J. Int. J. All Asp. Des. 2017, 20, 561–576. [Google Scholar] [CrossRef]
- Nakagaki, K.; Follmer, S.; Dementyev, A.; Paradiso, J.A.; Ishii, H. Designing Line-Based Shape-Changing Interfaces. IEEE Pervasive Comput. 2017, 16, 36–46. [Google Scholar] [CrossRef]
- TeamLab Borderless. Available online: https://borderless.teamlab.art/ (accessed on 27 December 2022).
- Orlikwski, W.J. Sociomaterial Practices: Exploring technology at work. Organ. Stud. 2007, 28, 1435–1448. [Google Scholar] [CrossRef]
- Leonardi, P.M.; Barley, S.R. Materiality and change: Challenges to building better theory about Technology and organizing. Inf. Organ. 2008, 18, 159–176. [Google Scholar] [CrossRef]
- Quercia, D.; Schifanella, R.; Aiello, L.M. The shortest path to happiness: Recommending beautiful, quiet, and happy routes in the city. In Proceedings of the 25th ACM Conference on Hypertext and Social Media (HT ‘14), Santiago, Chile, 1–4 September 2014; pp. 116–125. [Google Scholar]
- Bogost, I. “The Rhetoric of Video Games”. The Ecology of Games: Connecting Youth, Games, and Learning. In MacArthur Foundation Series on Digital Media and Learning; Salen, K., John, D., Catherine, T., Eds.; The MIT Press: Cambridge, MA, USA, 2008; pp. 117–140. [Google Scholar]
- Bogost, I. Alien Phenomenology, or What It’s Like to Be a Thing; University of Minnesota Publishing: Minneapolis, MN, USA, 2012. [Google Scholar]
- Frnda, J.; Durica, M.; Nedoma, J.; Zabka, S.; Martinek, S.R.; Kostelansky, M. A Weather Forecast Model Accuracy Analysis and ECMWF Enhancement Proposal by Neural Network. Sensors 2019, 19, 5144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, R.; Nakajima, T. Collectively Sharing People’s Visual and Auditory Capabilities: Exploring Opportunities and Pitfalls. SN Comput. Sci. 2020, 1, 298. [Google Scholar] [CrossRef]
- Kawsar, F.; Fujinami, K.; Nakajima, T. Exploiting passive advantages of sentient artefacts. In Proceedings of the Third International Conference on Ubiquitous Computing Systems (UCS’06), Seoul, Republic of Korea, 11–13 October 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 270–285. [Google Scholar]
- Kawsar, F.; Nakajima, T.; Fujinami, K. Deploy spontaneously: Supporting end-users in building and enhancing a smart home. In Proceedings of the 10th International Conference on Ubiquitous Computing, Seoul, Republic of Korea, 21–24 September 2008. [Google Scholar]
- Lea, R.; Gibbs, S.; Gauba, R.; Balaraman, R. Havi: Example by Example: Java Programming for Home Entertainment Devices; Prentice Hall: Hoboken, NJ, USA, 2001. [Google Scholar]
- Goodall, W.; Fishman, T.D.; Bornstein, J.; Bonthron, B. The rise of mobility as a service. Deloitte Rev. 2017, 20, 112–129. [Google Scholar]
- Billinghurst, M.; Clark, A.; Lee, G. A Survey of Augmented Reality. Found. Trends Hum.-Comput. Interact. 2014, 8, 73–272. [Google Scholar] [CrossRef]
- Want, R.; Schilit, B.N. Interactive Digital Signage. Computer 2012, 45, 21–24. [Google Scholar] [CrossRef]
- Rahmi, M.S.; Rahmat, N.; Saleh, A. Posthuman in Japanese Pop Culture: Virtual Idol Hatsune Miku. In Proceedings of the 1st Annual International Conference on Language and Literature, Medan, Indonesia, 18–19 April 2018. [Google Scholar]
- Speicher, M.; Hall, B.D.; Nebeling, M. What is Mixed Reality? In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ‘19), Glasgow, UK, 4–9 May 2019; pp. 1–15. [Google Scholar]
- Tokunaga, E.; Kimura, H.; Kobayashi, N.; Nakajima, T. Virtual tangible widgets: Seamless universal interaction with personal sensing devices. In Proceedings of the 7th International Conference on Multimodal Interfaces (ICMI ‘05), Torento, Italy, 4–6 October 2005; pp. 325–332. [Google Scholar]
- 360° Immersive Projection Mapping Experience. Available online: https://www.youtube.com/watch?v=WM14MP2rwxU (accessed on 15 November 2022).
- Hallnäs, L.; Redström, J. Slow Technology—Designing for Reflection. Pers. Ubiquitous Comput. 2001, 5, 201–212. [Google Scholar] [CrossRef]
- Google Map. Available online: https://www.google.co.jp/maps/ (accessed on 27 December 2022).
- Zhang, Y.; Nakajima, T. Exploring the Design of a Mixed-Reality 3D Minimap to Enhance Pedestrian Satisfaction in Urban Exploratory Navigation. Future Internet 2022, 14, 325. [Google Scholar] [CrossRef]
- Weiser, M.; Brown, J.S. Designing Calm Technology. 1995. Available online: https://calmtech.com/papers/designing-calm-technology.html (accessed on 27 December 2022).
- Wisneski, C.; Ishii, H.; Dahley, A.; Gorbet, M.; Brave, S.; Ullmer, B.; Yarin, P. Ambient Displays: Turning Architectural Space into an Interface between People and Digital Information. In Cooperative Buildings: Integrating Information, Organization, and Architecture; CoBuild 1998. LNCS; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1370. [Google Scholar]
- Kimura, R.; Jiang, K.; Zhang, D.; Nakajima, T. Society of “Citizen Science through Dancing”. In Ambient Intelligence—Software and Applications; Novais, P., Vercelli, G., Larriba-Pey, J.L., Herrera, F., Chamoso, P., Eds.; ISAmI 2020. Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; Volume 1239. [Google Scholar] [CrossRef]
- Hawkins, D. An analysis of expert thinking. Int. J. Man-Mach. Stud. 1983, 1, 1–47. [Google Scholar] [CrossRef]
- Nakajima, T.; Satoh, I. A software infrastructure for supporting spontaneous and personalized interaction in home computing environments. Pers. Ubiquitous Comput. 2006, 10, 379–391. [Google Scholar] [CrossRef]
- Serrano, W. Digital Systems in Smart City and Infrastructure: Digital as a Service. Smart Cities 2018, 1, 134–154. [Google Scholar] [CrossRef] [Green Version]
- Erl, T.; Puttini, R.; Mahmood, Z. Cloud Computing: Concepts, Technology & Architecture; Prentice Hall Press: Upper Saddle River, NJ, USA, 2013. [Google Scholar]
- Sullivan, L.H. The Tall Office Building Artistically Considered; Getty Research Institute: Los Angeles, CA, USA, 1896. [Google Scholar]
- Hamza, B. Playing, Mapping, and Power: A Critical Analysis of Using “Minecraft” in Spatial Design. Am. J. Play. 2020, 12, 363–389. [Google Scholar]
- Huotari, K.; Hamari, J. Defining gamification: A service marketing perspective. In Proceedings of the 16th International Academic MindTrek Conference (MindTrek ‘12), Tampere, Finland, 3–5 October 2012; pp. 17–22. [Google Scholar] [CrossRef]
- Hyper Reality. Available online: https://www.youtube.com/watch?v=YJg02ivYzSs (accessed on 27 December 2022).
- Correia, D.; Marques, J.L.; Teixeira, L. The State-of-the-Art of Smart Cities in the European Union. Smart Cities 2022, 5, 1776–1810. [Google Scholar] [CrossRef]
- Nilson, C. Live coding practice. In Proceedings of the 7th International Conference on New Interfaces for Musical Expression (NIME ‘07), New York, NY, USA, 6–10 June 2007; pp. 112–117. [Google Scholar]
- Hokimoto, A.; Nakajima, T.; Kurihara, K. An approach for constructing mobile applications using service proxies. In Proceedings of the 16th International Conference on Distributed Computing Systems, Hong Kong, China, 27–30 May 1996; pp. 726–733. [Google Scholar]
- Coulton, P.; Lindley, J.G. More-Than Human Centred Design: Considering Other Things. Des. J. Int. J. All Asp. Des. 2019, 22, 463–481. [Google Scholar] [CrossRef]
- Mitrović, I.; Golub, M.; Šuran, O. Design Fiction: Eutropia—Introduction to Speculative Design Practice; HDD & DVK UMAS: Zagreb, Croatia, 2015. [Google Scholar]
- Preiss, J.A.; Honig, W.; Sukhatme, G.S.; Ayanian, N. Crazyswarm: A Large Nano-Quadcopter Swarm. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar]
- Nakajima, T.; Lehdonvirta, V. Designing motivation using persuasive ambient mirrors. Pers. Ubiquitous Comput. 2013, 17, 107–126. [Google Scholar] [CrossRef]
- Al-Sada, M.; Höglund, T.; Khamis, M.; Urbani, J.; Nakajima, T. Orochi: Investigating Requirements and Expectations for Multipurpose Daily Used Supernumerary Robotic Limbs. In Proceedings of the 10th Augmented Human International Conference 2019 (AH2019), Reims, France, 11–12 March 2019; Volume 37, pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hensel, M.U.; Nilsson, F. The Changing Shape of Practice: Integrating Research and Design in Architecture; Routledge: London, UK, 2016. [Google Scholar]
- Kimura, R.; Nakajima, T. A Digital Platform for Sharing Collective Human Hearing. J. Data Intell. 2022, 3, 232–251. [Google Scholar] [CrossRef]
- Ikeuchi, K.; Al-Sada, M.; Nakajima, T. Providing ambient information as comfortable sound for reducing cognitive overload. In Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology (ACE ‘15), Iskandar, Malaysia, 16–19 November 2015; Volume 29, pp. 1–5. [Google Scholar]
- Kinoshita, Y.; Nakajima, T. Making Ambient Music Interactive Based on Ubiquitous Computing Technologies. In Ambient Intelligence—Software and Applications, 9th International Symposium on Ambient Intelligence; ISAmI2018. Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2019; Volume 806. [Google Scholar] [CrossRef]
- Music for Airports Liner Notes. Available online: http://music.hyperreal.org/artists/brian_eno/MFA-txt.html (accessed on 27 December 2022).
- Matsuda, K. Mirrorworlds. 2018. Available online: https://blog.leapmotion.com/mirrorworlds/ (accessed on 27 December 2022).
- Ferrari, L.M.; Ismailov, U.; Badier, J.M.; Greco, F.; Ismailova, E. Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. npj Flex. Electron. 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Dewey, J. Art as Experience; TarcherPerigee: New York, NY, USA, 2005. [Google Scholar]
- Klein, H.K.; Myers, M.D. A Set of Principles for Conducting and Evaluating Interpretive Field Studies in Information Systems. MIS Q. 1999, 1, 67–93. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimura, R.; Nakajima, T. Modeling a Digitally Enhanced Real World Inspired by Agential Realism—Exploring Opportunities and Challenges. Smart Cities 2023, 6, 319-338. https://doi.org/10.3390/smartcities6010016
Kimura R, Nakajima T. Modeling a Digitally Enhanced Real World Inspired by Agential Realism—Exploring Opportunities and Challenges. Smart Cities. 2023; 6(1):319-338. https://doi.org/10.3390/smartcities6010016
Chicago/Turabian StyleKimura, Risa, and Tatsuo Nakajima. 2023. "Modeling a Digitally Enhanced Real World Inspired by Agential Realism—Exploring Opportunities and Challenges" Smart Cities 6, no. 1: 319-338. https://doi.org/10.3390/smartcities6010016
APA StyleKimura, R., & Nakajima, T. (2023). Modeling a Digitally Enhanced Real World Inspired by Agential Realism—Exploring Opportunities and Challenges. Smart Cities, 6(1), 319-338. https://doi.org/10.3390/smartcities6010016