Abstract
New approaches to the characterization of porous materials must satisfy principles of green analytical chemistry; in addition, they should be reproducible, versatile, and capable of providing relevant information for specific applications. Membrane characterization techniques often fail to meet some of these requirements. Specifically, hydrodynamic porous-based model methods (HPMMs) enable the simulation and evaluation of membrane properties, as well as the monitoring of changes in the response to controlled and uncontrolled modifications. Nevertheless, HPMMs are limited by the multifactorial relationships between their variables and by the generation of only single-value responses. Here, a semi-empirical approach to the characterization of membrane pore structure is proposed and evaluated using simple experimental measurements from pristine and modified membranes. The model enables the determination of the effective pore radius based on two size descriptors related to porosity and permeability, the construction of pore size distributions, and the estimation of structural parameters, such as the number of pores, pore size, and surface porosity. Furthermore, it allows for the simulation of Darcy-type flow behavior in both linear and nonlinear regimes. The model was evaluated on pristine and poly(vinyl alcohol)-modified poly(ethersulfone) ultrafiltration membranes (60–120 mmolL−1) by diafiltration (100–400 kPa). Results demonstrate the usefulness of the model in characterizing membrane pore structure by using simple, fast, and non-destructive methods, thereby enabling advances in analytical diafiltration for membrane characterization.