Development of a Colorimetric Polydiacetylene, Solid-Substrate Sensor for SARS-CoV-2 Detection in Human Saliva
Abstract
1. Introduction
2. Materials and Methods
2.1. General
2.1.1. Materials
2.1.2. Instrumentation
2.1.3. Purification and Filtration Supplies and Substrate Storage
2.2. Synthesis of Precursors
2.2.1. Synthesis of PCDA-NHS Monomer
2.2.2. Preparation of Stock Solutions
2.2.3. Ethanolamine/PBS Stock Solution
2.3. Sensor Production and Testing
2.3.1. General Overview
2.3.2. Production of pDA/pDA-NHS Substrate Platforms
2.3.3. PCDA Sensor Synthesis
2.3.4. Sensor Testing Protocol
3. Results
3.1. Sensor Preparation
3.1.1. Selection of a Sensor Substrate
3.1.2. General Synthesis Procedure
3.2. pH and Surfactant Effects on the Sensor Platform
3.3. Effects of Other Additives
3.4. Sensor Performance Against Model Antibodies
3.4.1. N-Antibody vs. N-Protein
3.4.2. ACE2 Antibody vs. Spike Protein
3.5. Testing Biosensor Membranes Against Denatured and Active Viruses
3.5.1. General
3.5.2. Testing Summary
3.6. Additional Testing of N-Antibody Protein Biosensor Membranes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- D’Cruz, R.J.; Currier, A.W.; Sampson, V.B. Laboratory Testing Methods for Novel Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Front. Cell Dev. Biol. 2020, 8, 468. [Google Scholar] [CrossRef]
- Jianga, L.; Luoa, J.; Dong, D.; Wang, C.; Jin, W.; Xia, Y.; Wang, H.; Ding, H.; Jiang, L.; He, H. Development and evaluation of a polydiacetylene based biosensor for the detection of H5 influenza virus. J. Virol. Methods 2015, 219, 38–45. [Google Scholar] [CrossRef]
- Vengesai, A.; Midzi, H.; Kasambala, M.; Mutandadzi, H.; Mduluza-Jokonya, T.L.; Rusakaniko, S.; Mutapi, F.; Naicker, T.; Mduluza, T. A systematic and meta-analysis review on the diagnostic accuracy of antibodies in the serological diagnosis of COVID-19. Syst. Rev. 2021, 10, 155. [Google Scholar] [CrossRef]
- National Institute of Health. National Institute of Biomedical Imaging and Bioengineering. Available online: https://www.nibib.nih.gov/programs/radx-tech-program/authorized-tests (accessed on 30 May 2025).
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 Novel Coronavirus (2019-nCoV) by Real-Time RT-PCR. Euro Surveill. 2020, 25, 2000045. [Google Scholar] [CrossRef]
- Tahamtan, A.; Ardebili, A. Real-Time RT-PCR in COVID-19 Detection: Issues Affecting the Results. Expert. Rev. Mol. Diagn. 2020, 20, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Viro. 2016, 3, 237–261. [Google Scholar] [CrossRef]
- Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The Spike Glycoprotein of the New Coronavirus 2019-nCoV Contains a Furin-like Cleavage Site Absent in CoV of the Same Clade. Antivir. Res. 2020, 176, 104742. [Google Scholar]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- McBride, R.; van Zyl, M.; Fielding, B.C. The Coronavirus Nucleocapsid Is a Multifunctional Protein. Viruses 2014, 6, 2991–3018. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Pan, J.; Tao, J.; Guo, D. SARS-CoV Nucleocapsid Protein Antagonizes IFN-β Response by Targeting Initial Step of IFN-β Induction Pathway, and Its C-Terminal Region Is Critical for the Antagonism. Virus Genes 2010, 42, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Roy, V.; Fischinger, S.; Atyeo, C.; Slein, M.; Loos, C.; Balas, A.; Luedemann, C.; Astudillo, M.; Yang, D.; Wesemann, D.; et al. SARS-CoV-2-secific ELISA development. J. Immunol. Methods 2020, 484–485, 112832. [Google Scholar] [CrossRef]
- Wu, L.; Li, G.; Xu, X.; Zhu, L.; Huang, R.; Chen, X. Application of nano-ELISA in foodanalysis: Recent advnaces and challenges. Trends Anal. Chem. 2019, 113, 140–156. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; et al. Antibody Responses to SARS-CoV-2 in Patients with Novel Coronavirus Disease. Clin. Infect. Dis. 2019, 71, 2027–2034. [Google Scholar] [CrossRef]
- Okba, N.M.; Müller, M.A.; Li, W.; Wang, C.; GeurtsvanKessel, C.H.; Corman, V.M.; Lamers, M.M.; Sikkema, R.S.; de Bruin, E.; Chandler, F.D.; et al. SARS-CoV-2 specific antibody responses in COVID-19 patients. MedRxiv 2020. [Google Scholar] [CrossRef]
- Rai, P.; Kumar, B.K.; Deekshit, V.K.; Karunasagar, I.; Kaunasagar, I. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl. Microbiol. Biotechnol. 2021, 105, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Wegner, G. Topochemische Reaktionen von Monomeren mit konjugierten Dreifachbindungen/Topochemical Reactions of Monomers with Conjugated Triple Bonds. Z. Fur Naturforschung Sect. B-A J. Chem. Sci. 1969, 24, 824–832. [Google Scholar] [CrossRef]
- Charych, D.; Cheng, Q.; Reichert, A.; Kuziemko, G.; Stroh, M.; Nagyl, J.O.; Spevak, W.; Steven, R.C. A ‘litmus test’ for molecular recognition using artificial membranes. Chem. Biol. 1996, 3, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Lebègue, E.; Farre, C.; Jose, C.; Saulnier, J.; Lagarde, F.; Chevalier, Y.; Chaix, C.; Jaffrezic-Renault, N. Responsive Polydiacetylene Vesicles for Biosensing Microorganisms. Sensors 2018, 18, 599–615. [Google Scholar] [CrossRef]
- Patra, S.; Shand, H.; Ghosal, S.; Ghorai, S. Harnessing polydiacetylene (PDA): A review of structural mechanics and infectious disease detection. Next Mater. 2025, 8, 100687. [Google Scholar] [CrossRef]
- Jeong, H.-P.; Cho, E.; Yun, D.; Kim, T.; Lee, I.-S.; Jung, S. Label-Free Colorimetric Detection of Influenza Antigen Based on an Antibody-Polydiacetylene Conjugate and Its Coated Polyvinylidene Difluoride Membrane. Polymers 2017, 9, 127. [Google Scholar] [CrossRef]
- Kharade, J.; Rodriguez, I.; Sanchez, V.; Materon, L.; Lozaono, K. Effect of Antimicrobial Metal Oxides on Molecular Arrangement and Sensing Ability of Polydiacetylene/Polyvinylidene Fluoride Nanofibers. J. Appl. Polym. Sci. 2025, 142, e57696. [Google Scholar] [CrossRef]
- Park, H.K.; Chung, S.J.; Park, H.G.; Cho, J.-H.; Kim, M.; Chung, B.H. Mixed self-assembly of polydiacetylenes for highly specific and sensitive strip biosensors. Biosens. Bioelectron. 2008, 24, 480–484. [Google Scholar] [CrossRef]
- Wen, J.T.; Viravathana, P.; Ingel, B.; Roper, C.; Tsutsui, H. Polydiacetylene-Coated Sensor Strip for Immunochromatic Detection of Xylella fastidiosa subsp. fastidiosa. SLAS Tech. 2017, 22, 406–412. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Q.; Ye, L. Colorimetric aptasensing of microcystin-LR using DNA-conjugated polydiacetylene. Anal. Bioanal. Chem. 2024, 416, 7131–7140. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, T.V.; Soares, N.F.F.; Silva, D.J.; de Andrade, N.J.; Medeiros, E.A.A.; Badaró, A.T. Development of PDA/Phospholipids/Lysine Vesicles to Detect Pathogenic Bacteria. Sens. Actuat. B Chem. 2013, 188, 385–392. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Goodall, E.; Popat, K.C.; Zou, L.; Li, Y.V. Selective detection of Gram-negative bacteria and antibacterial properties of colorimetric polydiacetylene nanofibers. J. Mater. Sci. 2023, 58, 8261–8273. [Google Scholar] [CrossRef]
- Lehot, V.; Neuberg, P.; Ripoll, M.; Daubeuf, F.; Erb, S.; Dovgan, I.; Ursuegui, S.; Cianférani, S.; Kichler, A.; Chaubet, G.; et al. Targeted Anticancer Agent with Original Mode of Action Prepared by Supramolecular Assembly of Antibody Oligonucleotide Conjugates and Cationic Nanoparticles. Pharmaceutics 2023, 15, 1643. [Google Scholar] [CrossRef]
- Son, S.U.; Seo, S.B.; Jang, S.; Choi, J.; Lim, J.-W.; Lee, D.K.; Kim, H.; Seo, S.; Kang, T.; Jung, J.; et al. Naked-Eye Detection of Pandemic Influenza a (pH1N1) Virus by Polydiacetylene (PDA)-Based Paper Sensor as a Point-of-Care Diagnostic Platform. Sens. Actuat. B Chem. 2019, 291, 257–265. [Google Scholar] [CrossRef]
- Prainito, C.D.; Eshun, G.; Osonga, F.J.; Isika, D.; Centeno, C.; Sadik, O.A. Colorimetric Detection of the SARS-CoV-2 Virus (COVID-19) in Artificial Saliva Using Polydiacetylene Paper Strips. Biosensors 2022, 12, 804. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Sabino, R.; Gangwish, J.; Manivasagam, V.; James, S.; Popat, K.; Reynolds, M.; Li, Y.V. A novel colorimetric biosensor for detecting SARS-CoV-2 by utilizing the interaction between nucleocapsid antibody and spike proteins. Vitr. Models 2022, 1, 241–247. [Google Scholar] [CrossRef]
- Charych, D.H.; Nagy, J.O.; Spevak, W.; Bednarski, M.D. Direct Colorimetric Detection of a Receptor-Ligand Interaction by a Polymerized Bilayer Assembly. Science 1993, 261, 585–588. [Google Scholar] [CrossRef]
- Kim, J.-M.; Ji, E.-K.; Woo, S.M.; Lee, H.; Ahn, D.J. Immobilized polydiacetylene vesicles on solid substrates for use as chemosensors. Adv. Mater. 2003, 15, 1118–1121. [Google Scholar] [CrossRef]
- Peng, H.; Tang, J.; Yang, L.; Pang, J.; Ashbaugh, H.S.; Brinker, C.J.; Yang, Z.; Lu, Y. Responsive periodic mesoporous polydiacetylene/silica nanocomposites. J. Am. Chem. Soc. 2006, 128, 5304–5305. [Google Scholar] [CrossRef] [PubMed]
- Meir, D.; Silbert, L.; Volinsky, R.; Kolusheva, S.; Weiser, I.; Jelinek, R. Colorimetric/fluorescent bacterial sensing by agarose- embedded lipid/polydiacetylene films. J. Appl. Microbiol. 2008, 104, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, J.S.; Ellerbrock, B.M.; Stevens, K.A.; Brown, P.J.; Pennington, W.T.; Hanks, T.W. Preparation, characterization, and sensing behavior of polydiacetylene liposomes embedded in alginate fibers. ACS Appl. Mater. Interfaces 2009, 1, 1287–1291. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Hu, P.A.; Zhang, J.; Wang, L.; Feng, W.; Lei, S.; Yang, B.; Cao, W. Colorimetric Sensor Based on Self- Assembled Polydiacetylene/Graphene-Stacked Composite Film for Vapor-Phase Volatile Organic Compounds. Adv. Funct. Mater. 2013, 23, 6044–6050. [Google Scholar] [CrossRef]
- Jung, S.-H.; Jang, H.; Lim, M.-C.; Kim, J.-H.; Shin, K.-S.; Kim, S.M.; Kim, H.-Y.; Kim, Y.-R.; Jeon, T.-J. Chromatic Biosensor for Detection of Phosphinothricin Acetyltransferase (PAT) using Polydiacetylene Vesicles Encapsulated Within Automatically Generated Immuno-Hydrogel Beads. Anal. Chem. 2015, 87, 2072. [Google Scholar] [CrossRef]
- Zhang, Y.; Dawson, P.L.; Hanks, T.W.; Northcutt, J.K.; Tzeng, T.-R.; Pennington, W.T. Detecting and Correlating Bacterial Populations to Visual Color Change of Polydiacetylene-Coated Filters. Talanta 2020, 221, 121482. [Google Scholar] [CrossRef]
- Wen, J.T.; Bohorquez, K.; Tsutsui, H. Polydiacetylene-Coated Polyvinylidene Fluoride Strip Aptasensor for Colorimetric Detection of Zinc (II). Sens. Actuat. 2016, 232, 313–317. [Google Scholar] [CrossRef]
- Yoon, B.; Lee, S.; Kim, J.-M. Recent conceptual and technological advances in polydiacetylene-based supramolecular chemosensors. Chem. Soc. Rev. 2009, 38, 1958–1968. [Google Scholar] [CrossRef]
- Zhang, Y.; Northcutt, J.; Hanks, T.W.; Miller, I.; Pennington, W.T.; Jelinek, R.; Han, I.; Dawson, P. Polydiacetylene sensor interaction with food sanitizers and surfactants. Food Chem. 2017, 221, 515–520. [Google Scholar] [CrossRef]
- Zhou, Y.; Xue, Y.; Lin, X.; Duan, M.; Hong, W.; Geng, L.; Zhou, J.; Fan, Y. Smartphone-based polydiacetylene colorimetric sensor for point-of-care diagnosis of bacterial infections. Smart Mater. Med. 2024, 5, 140–162. [Google Scholar] [CrossRef]
- Fang, X.; Ye, L.B.; Zhang, Y.; Li, B.; Li, S.; Kong, L.; Wang, Y.; Zheng, H.; Wang, W.; Wu, Z. Nucleocapsid amino acids 211 to 254, in particular, tetrad glutamines, are essential for the interaction between the nucleocapsid and membrane proteins of SARS-associated coronavirus. J. Microbiol. 2006, 44, 577–580. [Google Scholar] [PubMed]
- Luo, H.; Chen, Q.; Chen, J.; Chen, K.; Shen, X.; Jiang, H. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett. 2005, 579, 2623–2628. [Google Scholar] [CrossRef] [PubMed]









| Chemical | 0 min | 5 min | 15 min | 30 min | 60 min | 75 min | 120 min | 180 min | 24 h |
|---|---|---|---|---|---|---|---|---|---|
| 20 mM Tris-HCl | 0 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1.5 | 2 |
| 0.5 M NaCl | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6% Trehalose | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 20 mM Tris-HCl + 0.5 M NaCl + 6% Trehalose | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 20 mM Tris-HCl + 0.5 M NaCl | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.5 |
| 20 mM Tris-HCl + 6% Trehalose | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0.5 M NaCl + 6% Trehalose | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Chemical | 0 min | 5 min | 15 min | 30 min | 60 min | 75 min | 120 min | 180 min | 24 h |
|---|---|---|---|---|---|---|---|---|---|
| 20 mM Tris-HCl | 1 1 | 1 | 1.5 | 2 | 3.5 | 4 | 4 | 4 | 4 |
| 0.5 M NaCl | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 6% Trehalose | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 20 mM Tris-HCl + 0.5 M NaCl + 6% Trehalose | 1 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 |
| 20 mM Tris-HCl + 0.5 M NaCl | 1 | 1 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| 20 mM Tris-HCl + 6% Trehalose | 0 | 0 | 1 | 1 | 4 | 4 | 4 | 4 | 4 |
| 0.5 M NaCl + 6% Trehalose | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| N-Pro Ab Probe | N-Pro Trigger (µg) | NP-40 | Time at 40 °C | Response |
|---|---|---|---|---|
| 25 µL (25 µg) | 5.0 | 0.02% 10 µL | + bright ![]() | |
| 25 µL (25 µg) | 5.0 | none | - | |
| 25 µL (25 µg) | 0 | 0.02% 10 µL | - | |
| 25 µL (25 µg) | 0 | 0.02% 10 µL | 60 s | - |
| 25 µL (25 µg) | 5.0 | 0.02% 10 µL | 60 s | + bright ![]() |
| none | 5.0 | 0.02% 10 µL | dull color | |
| none | 5.0 | none | - | |
| none | 0 | 0.02% 10 µL | - | |
| none | 0 | 0.02% 10 µL | 60 s | - |
| none | 5.0 | 0.02% 10 µL | 60 s | dull color |
| N-Pro Ab Probe | N-Pro Trigger (µg) | NP-40 | Time at 40 °C | Response |
|---|---|---|---|---|
| 25 µL (25 µg) | 5.0 | 0.02% 10 µL | + bright ![]() | |
| 25 µL (25 µg) | 5.0 | none | - | |
| 25 µL (25 µg) | 0 | 0.02% 10 µL | - | |
| 25 µL (25 µg) | 0 | 0.02% 10 µL | 60 s | - |
| 25 µL (25 µg) | 5.0 | 0.02% 10 µL | 60 s | + bright ![]() |
| none | 5.0 | 0.02% 10 µL | dull color | |
| none | 5.0 | none | - | |
| none | 0 | 0.02% 10 µL | - | |
| none | 0 | 0.02% 10 µL | 60 s | - |
| none | 5.0 | 0.02% 10 µL | 60 s | dull color |
| N-Pro Ab Probe | N-Pro Trigger (µg) | NP-40 | Time at 40 °C | Response |
|---|---|---|---|---|
| 25 µL (25 µg) | 5.0 | 0.02% | + bright ![]() | |
| 25 µL (25 µg) | 5.0 | none | - pink when dry | |
| 25 µL (25 µg) | 0 | 0.02% | - | |
| 25 µL (25 µg) | 5.0 | 0.02% | 60 s | + bright ![]() |
| none | 5.0 | 0.02% | dull color | |
| none | 5.0 | none | - pink when dry | |
| none | 0 | 0.02% | - | |
| none | 5.0 | 0.02% | 60 s | dull color ![]() |
| Spike Ab Probe (µg) | SARS RBD Trigger (µg) | %NP-40 | Response |
|---|---|---|---|
| 20 | 1.0 | 0.01 | - |
| 20 | 2.0 | 0.01 | - |
| 20 | 3.0 | 0.01 | ~ |
| 20 | 4.0 | 0.01 | + |
| 20 | 1.0 | 0.1 | + |
| 20 | 2.0 | 0.1 | + |
| 20 | 3.0 | 0.1 | + |
| 20 | 4.0 | 0.1 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stueber, C.T.; Hanks, T.W.; Dawson, P.L.; Northcutt, J.K.; Pennington, W.T.; Cochran, B. Development of a Colorimetric Polydiacetylene, Solid-Substrate Sensor for SARS-CoV-2 Detection in Human Saliva. Surfaces 2025, 8, 79. https://doi.org/10.3390/surfaces8040079
Stueber CT, Hanks TW, Dawson PL, Northcutt JK, Pennington WT, Cochran B. Development of a Colorimetric Polydiacetylene, Solid-Substrate Sensor for SARS-CoV-2 Detection in Human Saliva. Surfaces. 2025; 8(4):79. https://doi.org/10.3390/surfaces8040079
Chicago/Turabian StyleStueber, Christopher T., Timothy W. Hanks, Paul L. Dawson, Julie K. Northcutt, William T. Pennington, and Belinda Cochran. 2025. "Development of a Colorimetric Polydiacetylene, Solid-Substrate Sensor for SARS-CoV-2 Detection in Human Saliva" Surfaces 8, no. 4: 79. https://doi.org/10.3390/surfaces8040079
APA StyleStueber, C. T., Hanks, T. W., Dawson, P. L., Northcutt, J. K., Pennington, W. T., & Cochran, B. (2025). Development of a Colorimetric Polydiacetylene, Solid-Substrate Sensor for SARS-CoV-2 Detection in Human Saliva. Surfaces, 8(4), 79. https://doi.org/10.3390/surfaces8040079








