Capitoli, G.; Magnaghi, S.; D'Amicis, A.; Di Martino, C.V.; Piga, I.; L'Imperio, V.; Nobile, M.S.; Galimberti, S.; Bernasconi, D.P.
Machine Learning Ensemble Algorithms for Classification of Thyroid Nodules Through Proteomics: Extending the Method of Shapley Values from Binary to Multi-Class Tasks. Stats 2025, 8, 64.
https://doi.org/10.3390/stats8030064
AMA Style
Capitoli G, Magnaghi S, D'Amicis A, Di Martino CV, Piga I, L'Imperio V, Nobile MS, Galimberti S, Bernasconi DP.
Machine Learning Ensemble Algorithms for Classification of Thyroid Nodules Through Proteomics: Extending the Method of Shapley Values from Binary to Multi-Class Tasks. Stats. 2025; 8(3):64.
https://doi.org/10.3390/stats8030064
Chicago/Turabian Style
Capitoli, Giulia, Simone Magnaghi, Andrea D'Amicis, Camilla Vittoria Di Martino, Isabella Piga, Vincenzo L'Imperio, Marco Salvatore Nobile, Stefania Galimberti, and Davide Paolo Bernasconi.
2025. "Machine Learning Ensemble Algorithms for Classification of Thyroid Nodules Through Proteomics: Extending the Method of Shapley Values from Binary to Multi-Class Tasks" Stats 8, no. 3: 64.
https://doi.org/10.3390/stats8030064
APA Style
Capitoli, G., Magnaghi, S., D'Amicis, A., Di Martino, C. V., Piga, I., L'Imperio, V., Nobile, M. S., Galimberti, S., & Bernasconi, D. P.
(2025). Machine Learning Ensemble Algorithms for Classification of Thyroid Nodules Through Proteomics: Extending the Method of Shapley Values from Binary to Multi-Class Tasks. Stats, 8(3), 64.
https://doi.org/10.3390/stats8030064