Urban Soil Pollution by Heavy Metals: Effect of the Lockdown during the Period of COVID-19 on Pollutant Levels over a Five-Year Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling, and Sample Preparation
2.2. Chemical Analyses
2.3. Contamination Indices
2.3.1. Contamination Factor (CF)
2.3.2. Pollution Load Index (PLI)
2.3.3. Geo–Accumulation Index (Igeo)
2.3.4. Ecological Risk Factor (Er)
2.3.5. Potential Ecological Risk Index (RI)
2.4. Data Analysis
3. Results and Discussion
3.1. Soil Physicochemical Properties
3.2. Variation in Pseudo-Total Concentrations of Heavy Metals
3.3. Thematic Maps of Heavy Metal Contamination Factors (CFs)
3.4. Contamination Factor (CF), Geo–Accumulation Index (Igeo), Ecological Risk Factor (Er), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor and Francis Group: Ann Arbor, MI, USA, 2010; ISBN 9781420093704. [Google Scholar]
- Golia, E.E.; Dimirkou, A.; Floras, S.A. Spatial Monitoring of Arsenic and Heavy Metals in the Almyros Area, Central Greece. Statistical Approach for Assessing the Sources of Contamination. Environ. Monit. Assess. 2015, 187, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Golia, E.E.; Tsiropoulos, G.N.; Füleky, G.; Floras, S.; Vleioras, S. Pollution Assessment of Potentially Toxic Elements in Soils of Different Taxonomy Orders in Central Greece. Environ. Monit. Assess. 2019, 191, 106. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Blackie Academic and Professional: London, UK, 2013. [Google Scholar]
- Long, Z.; Zhu, H.; Bing, H.; Tian, X.; Wang, Z.; Wang, X.; Wu, Y. Contamination, Sources and Health Risk of Heavy Metals in Soil and Dust from Different Functional Areas in an Industrial City of Panzhihua City, Southwest China. J. Hazard. Mater. 2021, 420, 126638. [Google Scholar] [CrossRef] [PubMed]
- Karpouzas, D.G.; Pantelelis, I.; Menkissoglu-Spiroudi, U.; Golia, E.; Tsiropoulos, N.G. Leaching of the Organophosphorus Nematicide Fosthiazate. Chemosphere 2007, 68, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Igwe, O.; Una, C.O.; Abu, E.; Adepehin, E.J. Environmental Risk Assessment of Lead–Zinc Mining: A Case Study of Adudu Metallogenic Province, Middle Benue Trough, Nigeria. Environ. Monit. Assess. 2017, 189, 492. [Google Scholar] [CrossRef]
- Dimirkou, A.; Ioannou, Z.; Golia, E.E.; Danalatos, N.; Mitsios, I.K. Sorption of Cadmium and Arsenic by Goethite and Clinoptilolite. Commun. Soil Sci. Plant Anal. 2009, 40, 259–272. [Google Scholar] [CrossRef]
- Mahey, S.; Kumar, R.; Sharma, M.; Kumar, V.; Bhardwaj, R. A Critical Review on Toxicity of Cobalt and Its Bioremediation Strategies. SN Appl. Sci. 2020, 2, 1279. [Google Scholar] [CrossRef]
- Golia, E.E.; Kantzou, O.-D.; Chartodiplomenou, M.-A.; Papadimou, S.G.; Tsiropoulos, N.G. Study of Potentially Toxic Metal Adsorption in a Polluted Acid and Alkaline Soil: Influence of Soil Properties and Levels of Metal Concentration. Soil Syst. 2023, 7, 16. [Google Scholar] [CrossRef]
- Peana, M.; Pelucelli, A.; Chasapis, C.T.; Perlepes, S.P.; Bekiari, V.; Medici, S.; Zoroddu, M.A. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2022, 13, 36. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, D.; Qin, J.; Zhao, S.; Lin, J.; Zhang, X.; Wang, J.; Zhu, M. Deterministic and Probabilistic Health Risk Assessment of Toxic Metals in the Daily Diets of Residents in Industrial Regions of Northern Ningxia, China. Biol. Trace Elem. Res. 2023, 1–15. [Google Scholar] [CrossRef]
- Briki, M.; Zhu, Y.; Gao, Y.; Shao, M.; Ding, H.; Ji, H. Distribution and Health Risk Assessment to Heavy Metals near Smelting and Mining Areas of Hezhang, China. Environ. Monit. Assess. 2017, 189, 458. [Google Scholar] [CrossRef] [PubMed]
- Mawari, G.; Kumar, N.; Sarkar, S.; Daga, M.K.; Singh, M.M.; Joshi, T.K.; Khan, N.A. Heavy Metal Accumulation in Fruits and Vegetables and Human Health Risk Assessment: Findings from Maharashtra, India. Environ. Health Insights 2022, 16, 117863022211191. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, Z.; Tian, Y.; Shi, H.; Fei, Y.; Qi, J.; Mo, L. Research on Health Risk Assessment of Heavy Metals in Soil Based on Multi-Factor Source Apportionment: A Case Study in Guangdong Province, China. Sci. Total Environ. 2023, 858, 159991. [Google Scholar] [CrossRef] [PubMed]
- Dasharathy, S.; Arjunan, S.; Maliyur Basavaraju, A.; Murugasen, V.; Ramachandran, S.; Keshav, R.; Murugan, R. Mutagenic, Carcinogenic, and Teratogenic Effect of Heavy Metals. eCAM 2022, 2022, 8011953. [Google Scholar] [CrossRef]
- Boateng, T.K.; Opoku, F.; Akoto, O. Heavy Metal Contamination Assessment of Groundwater Quality: A Case Study of Oti Landfill Site, Kumasi. Appl. Water Sci. 2019, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Liu, Y.; Lin, S.; Liu, Y.; Xie, Y. Soil Pollution Management in China: A Brief Introduction. Sustainability 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Ye, B.; Han, H.; Li, S.; Yuan, P.; Fu, P.; Yuan, P.; Zhang, S. Monitoring and Exposure Risk Assessment of Lead Pollution in Commercially Cereal and Tuber Products in Henan, 2015–2019. Mod. Prev. Med. 2022, 49, 37–40. [Google Scholar]
- Zhao, G.; Ma, Y.; Liu, Y.; Cheng, J.; Wang, X. Source Analysis and Ecological Risk Assessment of Heavy Metals in Farmland Soils around Heavy Metal Industry in Anxin County. Sci. Rep. 2022, 1, 10562. [Google Scholar] [CrossRef]
- Doležalová Weissmannová, H.; Mihočová, S.; Chovanec, P.; Pavlovský, J. Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic. Int. J. Environ. Res. Public Health 2019, 16, 4495. [Google Scholar] [CrossRef] [Green Version]
- Miranzadeh Mahabadi, H.; Ramroudi, M.; Asgharipour, M.R.; Rahmani, H.R.; Afyuni, M. Evaluation of the Ecological Risk Index (Er) of Heavy Metals (HMs) Pollution in Urban Field Soils. SN Appl. Sci. 2020, 2, 1420. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Z.; Feng, D.; Zhang, X.; Jia, Z.; Fan, Q.; Liu, K. Study on the Risk of Soil Heavy Metal Pollution in Typical Developed Cities in Eastern China. Sci. Rep. 2022, 12, 3855. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hu, Z.; Bai, H.; Shen, W. Variation in Road Dust Heavy Metal Concentration, Pollution, and Health Risk with Distance from the Factories in a City–Industry Integration Area, China. Int. J. Environ. Res. Public Health 2022, 19, 14562. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jin, T.; Yu, S.; Chu, H. Pollution Characteristics and Health Risks of Heavy Metals in Road Dust in Ma’anshan, China. Environ. Sci. Pollut. Res. Int. 2023, 1–14. [Google Scholar] [CrossRef]
- Al-Swadi, H.A.; Usman, A.R.A.; Al-Farraj, A.S.; Al-Wabel, M.I.; Ahmad, M.; Al-Faraj, A. Sources, Toxicity Potential, and Human Health Risk Assessment of Heavy Metals-Laden Soil and Dust of Urban and Suburban Areas as Affected by Industrial and Mining Activities. Sci. Rep. 2022, 12, 8972. [Google Scholar] [CrossRef] [PubMed]
- Binner, H.; Sullivan, T.; Jansen, M.A.K.; McNamara, M.E. Metals in Urban Soils of Europe: A Systematic Review. Sci. Total Environ. 2023, 854, 158734. [Google Scholar] [CrossRef]
- Guilland, C.; Maron, P.A.; Damas, O.; Ranjard, L. Biodiversity of Urban Soils for Sustainable Cities. Environ. Chem. Lett. 2018, 16, 1267–1282. [Google Scholar] [CrossRef]
- Long, Z.; Huang, Y.; Zhang, W.; Shi, Z.; Yu, D.; Chen, Y.; Liu, C.; Wang, R. Effect of Different Industrial Activities on Soil Heavy Metal Pollution, Ecological Risk, and Health Risk. Environ. Monit. Assess. 2021, 193, 20. [Google Scholar] [CrossRef]
- Kuklová, M.; Kukla, J.; Hniličková, H.; Hnilička, F.; Pivková, I. Impact of Car Traffic on Metal Accumulation in Soils and Plants Growing Close to a Motorway (Eastern Slovakia). Toxics 2022, 10, 183. [Google Scholar] [CrossRef]
- Vatavali, F.; Gareiou, Z.; Kehagia, F.; Zervas, E. Impact of COVID-19 on Urban Everyday Life in Greece. Perceptions, Experiences and Practices of the Active Population. Sustainability 2020, 12, 9410. [Google Scholar] [CrossRef]
- Aslanidis, P.S.C.; Golia, E.E. Urban Sustainability at Risk Due to Soil Pollution by Heavy Metals—Case Study: Volos, Greece. Land 2022, 11, 1016. [Google Scholar] [CrossRef]
- Kotsiou, O.S.; Saharidis, G.K.D.; Kalantzis, G.; Fradelos, E.C.; Gourgoulianis, K.I. The Impact of the Lockdown Caused by the Covid-19 Pandemic on the Fine Particulate Matter (Pm2.5) Air Pollution: The Greek Paradigm. Int. J. Environ. Res. Public Health 2021, 18, 6748. [Google Scholar] [CrossRef] [PubMed]
- Barman, A.; Das, R.; De, P.K. Impact of COVID-19 in Food Supply Chain: Disruptions and Recovery Strategy. Curr. Res. Behav. Sci. 2021, 2, 100017. [Google Scholar] [CrossRef]
- GTP News. Available online: https://News.Gtp.Gr/2020/11/13/Lockdown-in-Greece-Guidelines-for-Tourists/ (accessed on 13 November 2020).
- Hampshire, A.; Hellyer, P.J.; Trender, W.; Chamberlain, S.R. Insights into the Impact on Daily Life of the COVID-19 Pandemic and Effective Coping Strategies from Free-Text Analysis of People’s Collective Experiences. Interface Focus 2021, 11, 202110051. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can Atmospheric Pollution Be Considered a Co-Factor in Extremely High Level of SARS-CoV-2 Lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, C.; Christodoulakis, J.; Kouremadas, G.A.; Fotaki, E.F. The Signature of the Coronavirus Lockdown in Air Pollution in Greece. Water Air Soil Poll. 2021, 232, 119. [Google Scholar] [CrossRef] [PubMed]
- Avdoulou, M.M.; Golfinopoulos, A.G.; Kalavrouziotis, I.K. Monitoring Air Pollution in Greek Urban Areas During the Lockdowns, as a Response Measure of SARS-CoV-2 (COVID-19). Water Air Soil Poll. 2023, 234, 13. [Google Scholar] [CrossRef]
- Golia, E.E.; Papadimou, S.G.; Cavalaris, C.; Tsiropoulos, N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece). Sustainability 2021, 13, 2029. [Google Scholar] [CrossRef]
- ISO 10381-5; Soil Quality—Sampling—Part 5: Guidance on the Procedure for the Investigation of Urban and Industrial Sites with Regard to Soil Contamination. International Standards Organization: Geneve, Switzerland, 2005.
- Page, A.L. Methods of Soil Analysis-Part 2: Chemical and microbiological properties. In American Society Agronomy, 2nd ed.; Phosphurus Inc.: Madison, WI, USA, 1982; Volume 9, pp. 421–422. [Google Scholar]
- Wiliams, S. (Ed.) Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed.; The Association: Arlington, VA, USA, 1984; pp. 59–60. [Google Scholar]
- ISO/DIS11466; Environment Soil Quality. By ISO Standards Compendium: Geneva, Switzerland, 1994.
- Mueller, G. Schwermetalle in Den Sedimenten des Rheins—Veranderungen Seit 1971. Umsch. Wissensch. Tech. 1979, 79, 778–783. [Google Scholar]
- Kasa, E.; Felix-Henningsen, P.; Duering, R.A.; Gjoka, F. The Occurrence of Heavy Metals in Irrigated and Non-Irrigated Arable Soils, NW Albania. Environ. Monit. Assess. 2014, 186, 3595–3603. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J. In Situ Relationships between Spatial-Temporal Variations in Potential Ecological Risk Indexes for Metals and the Short-Term Effects on Periphyton in a Macrophyte-Dominated Lake: A Comparison of Structural and Functional Metrics. Ecotoxicology 2014, 23, 553–566. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Haque, F.; Chiang, Y.W.; Santos, R.M. Alkaline Mineral Soil Amendment: A Climate Change Stabilization Wedge? Energies 2019, 12, 2299. [Google Scholar] [CrossRef] [Green Version]
- Krasilnikov, P.; Taboada, M.A. Amanullah Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture 2022, 12, 462. [Google Scholar] [CrossRef]
- Du, Y.; Cui, B.; Zhang, Q.; Wang, Z.; Sun, J.; Niu, W. Effects of Manure Fertilizer on Crop Yield and Soil Properties in China: A Meta-Analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Council of the European Communities. The Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Council Directive of 12 June 1986. Off. J. Eur. Communities 1986, 86, 278.
- Sutherland, J.E.; Zhitkovich, A.; Kluz, T.; Costa, M. Rats Retain Chromium in Tissues Following Chronic Ingestion of Drinking Water Containing Hexavalent Chromium. Biol. Trace Elem. Res. 2000, 74, 41–53. [Google Scholar] [CrossRef]
- Rajasekaran, R.; Abinaya, M. Heavy Metal Pollution in Ground Water—A Review. Int. J. Chemtech. Res. 2014, 6, 5661–5664. [Google Scholar]
pH | EC (μS/cm) | OM (%) * | CaCO3 (%) | Clay (%) | |
---|---|---|---|---|---|
Minimum value | 6.61 | 1125.78 | 0.28 | 9.69 | 2 |
Maximum value | 8.90 | 6962.57 | 4.49 | 20.43 | 55 |
Mean value | 7.51 | 3239.60 | 2.53 | 14.83 | 21 |
Relative Standard Deviation | 0.44 | 13.20 | 0.88 | 1.61 | 7.35 |
Skewness Coefficient | 0.698 | 0.751 | −0.137 | 0.247 | −0.010 |
Kurtosis Coefficient | 1.421 | −0.507 | −0.681 | −0.697 | 1.104 |
(a) | Cu | Zn | Pb | Ni | Cd | Co | Cr | Mn |
mg kg−1 | ||||||||
Min Values | 29.95 | 96.61 | 5.83 | 25.43 | 0.53 | 4.85 | 14.98 | 257.28 |
10th-perc a | 35.45 | 117.31 | 13.19 | 33.72 | 0.66 | 11.70 | 25.55 | 307.20 |
50th-perc b | 53.25 | 137.31 | 41.97 | 63.90 | 0.89 | 22.61 | 56.78 | 711.01 |
Mean Values | 55.08 | 144.32 | 36.39 | 67.36 | 0.88 | 23.37 | 48.42 | 666.78 |
90th-perc c | 82.76 | 180.25 | 55.79 | 109.97 | 1.11 | 36.41 | 63.52 | 954.09 |
Max Values | 89.93 | 227.39 | 58.48 | 118.02 | 1.27 | 39.32 | 68.37 | 971.93 |
EU Limits d | 140 | 300 | 300 | 75 | 3 | - | 200 | - |
BG (mg kg−1) e | 24.57 | 64.35 | 29.69 | 22.92 | 0.49 | 9,62 | 23.84 | 540.13 |
(b) | Cu | Zn | Pb | Ni | Cd | Co | Cr | Mn |
mg kg−1 | ||||||||
Min Values | 30.00 | 97.70 | 8.00 | 26.55 | 0.12 | 6.00 | 15.33 | 251.00 |
10th-perc a | 43.51 | 132.10 | 18.91 | 36.00 | 0.39 | 15.05 | 21.67 | 307.10 |
50th-perc b | 62.55 | 176.50 | 42.50 | 66.75 | 0.64 | 26.00 | 40.33 | 533.00 |
Mean Values | 60.59 | 177.11 | 37.75 | 69.51 | 0.69 | 28.76 | 37.68 | 603.29 |
90th-perc c | 79.00 | 229.10 | 53.90 | 89.97 | 0.97 | 42.27 | 48.67 | 898.90 |
Max Values | 89.00 | 310.00 | 61.00 | 121.00 | 1.87 | 51.00 | 59.00 | 988.00 |
EU Limits d | 140 | 300 | 300 | 75 | 3 | - | 200 | - |
BG (mg kg−1) e | 24.57 | 64.35 | 29.69 | 22.92 | 0.49 | 9,62 | 23.84 | 540.13 |
(a) CF | Cu | Zn | Pb | Ni | Cd | Co | Cr | Mn |
Descriptive statistics | ||||||||
Mean Value | 2.24 | 2.24 | 1.23 | 2.94 | 1.79 | 2.43 | 2.03 | 1.23 |
Standard Deviation | 0.73 | 0.43 | 0.56 | 1.16 | 0.34 | 1.03 | 0.67 | 0.45 |
Minimum Value | 1.22 | 1.50 | 0.20 | 1.11 | 1.14 | 0.50 | 0.63 | 0.48 |
Maximum Value | 3.66 | 3.53 | 1.97 | 5.11 | 2.59 | 4.09 | 2.87 | 1.80 |
Skewness Coefficient | 0.373 | 1.090 | −0.448 | 0.300 | 0.243 | −0.086 | −0.565 | −0.334 |
Kurtosis Coefficient | −1.117 | 1.394 | −1.195 | −0.872 | −0.272 | −1.087 | −1.205 | −1.375 |
Geostatistical parameters | ||||||||
Model | Linear to Sill | Spherical | Gaussian | Linear | Gaussian | Linear | Gaussian | Gaussian |
Nugget | 0.215 | 0.006 | 0 | 0.308 | 0.053 | 0.337 | 0 | 0 |
Range | 1364 | 338 | 425 | 991 | 560 | 968 | 396 | 429 |
Sill | 0.740 | 0.115 | 0.343 | 1.552 | 0.122 | 1.193 | 0.472 | 0.233 |
Nugget sill ratio | 0.062 | 0.003 | 0.040 | 1.218 | 0.002 | 0.561 | 0.086 | 0.051 |
R2 | 0.76 | 0.64 | 0.58 | 0.78 | 0.76 | 0.79 | 0.53 | 0.51 |
(b) CF | Cu | Zn | Pb | Ni | Cd | Co | Cr | Mn |
Descriptive statistics | ||||||||
Mean Value | 2.46 | 2.75 | 1.27 | 2.94 | 1.41 | 2.99 | 1.58 | 1.12 |
Standard Deviation | 0.61 | 0.61 | 0.50 | 1.03 | 0.66 | 1.17 | 0.50 | 0.42 |
Minimum Value | 1.22 | 1.52 | 0.27 | 1.16 | 0.24 | 0.62 | 0.64 | 0.46 |
Maximum Value | 3.62 | 4.82 | 2.05 | 5.28 | 3.82 | 5.30 | 2.47 | 1.83 |
Skewness Coefficient | 0.074 | 0.593 | −0.504 | 0.200 | 1.426 | 0.042 | −0.009 | 0.123 |
Kurtosis Coefficient | −1.308 | 0.933 | −1.074 | −0.518 | 2.859 | −1.258 | −0.031 | −1.296 |
Geostatistical parameters | ||||||||
Model | Linear to Sill | Exponential | Gaussian | Linear | Linear to Sill | Linear | Gaussian | Gaussian |
Nugget | 0.029 | 0.055 | 0 | 0.348 | 0.235 | 0.670 | 0 | 0 |
Range | 1364 | 1020 | 383 | 981 | 1464 | 935 | 431 | 354 |
Sill | 0.473 | 0.357 | 0.277 | 1.164 | 0.293 | 1.45 | 0.269 | 0.193 |
Nugget sill ratio | 0.033 | 0.021 | 0.062 | 0.846 | 0.023 | 0.814 | 0.026 | 0.031 |
R2 | 0.56 | 0.76 | 0.52 | 0.69 | 0.55 | 0.70 | 0.57 | 0.50 |
(a) | Cu | Zn | Pb | Ni | Cd | Co | Cr | Mn | |||||||||
Contamination Indices | Igeo | Er | Igeo | Er | Igeo | Er | Igeo | Er | Igeo | Er | Igeo | Igeo | Er | Igeo | Er | PLI | RI |
Mean Values | 0.50 | 11.21 | 0.56 | 2.24 | −0.52 | 6.13 | 0.85 | 14.68 | 0.23 | 53.82 | 0.53 | 0.34 | 4.06 | −0.40 | 1.23 | 1.90 | 93.37 |
Median Value | 0.53 | 10.84 | 0.52 | 2.14 | −0.09 | 7.07 | 0.89 | 13.94 | 0.27 | 54.26 | 0.65 | 0.67 | 4.76 | −0.19 | 1.32 | 1.90 | 89.07 |
Minimum Values | −0.30 | 6.09 | 0.00 | 1.50 | −2.93 | 0.98 | −0.44 | 5.55 | −0.39 | 34.29 | −1.57 | −1.26 | 1.26 | −1.65 | 0.48 | 0.84 | 57.82 |
Maximum Values | 1.29 | 18.30 | 1.24 | 3.53 | 0.39 | 9.85 | 1.77 | 25.53 | 0.79 | 77.76 | 1.45 | 0.94 | 5.74 | 0.26 | 1.80 | 2.95 | 140.08 |
Standard Deviation | 0.47 | 3.63 | 0.26 | 0.43 | 0.92 | 2.81 | 0.62 | 5.81 | 0.28 | 10.21 | 0.77 | 0.57 | 1.33 | 0.63 | 0.45 | 0.60 | 19.66 |
(b) | Cu | Zn | Pb | Ni | Cd | Co | Cr | Mn | |||||||||
Contamination Indices | Igeo | Er | Igeo | Er | Igeo | Er | Igeo | Er | Igeo | Er | Igeo | Igeo | Er | Igeo | Er | PLI | RI |
Mean Values | 0.67 | 12.30 | 0.84 | 2.75 | −0.40 | 6.36 | 0.87 | 14.68 | −0.24 | 42.30 | 0.87 | −0.01 | 3.16 | −0.54 | 1.12 | 1.86 | 82.67 |
Median Value | 0.76 | 12.73 | 0.87 | 2.74 | −0.07 | 7.16 | 0.96 | 14.56 | −0.20 | 39.18 | 0.85 | 0.17 | 3.38 | −0.60 | 0.99 | 1.85 | 79.06 |
Minimum Values | −0.30 | 6.11 | 0.02 | 1.52 | −2.48 | 1.35 | −0.37 | 5.79 | −2.61 | 7.35 | −1.27 | −1.22 | 1.29 | −1.69 | 0.46 | 0.93 | 35.77 |
Maximum Values | 1.27 | 18.11 | 1.68 | 4.82 | 0.45 | 10.27 | 1.82 | 26.40 | 1.35 | 114.49 | 1.82 | 0.72 | 4.95 | 0.29 | 1.83 | 2.79 | 166.87 |
Standard Deviation | 0.37 | 3.04 | 0.32 | 0.61 | 0.76 | 2.51 | 0.55 | 5.16 | 0.67 | 19.75 | 0.65 | 0.52 | 0.99 | 0.59 | 0.42 | 0.49 | 23.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadimou, S.G.; Kantzou, O.-D.; Chartodiplomenou, M.-A.; Golia, E.E. Urban Soil Pollution by Heavy Metals: Effect of the Lockdown during the Period of COVID-19 on Pollutant Levels over a Five-Year Study. Soil Syst. 2023, 7, 28. https://doi.org/10.3390/soilsystems7010028
Papadimou SG, Kantzou O-D, Chartodiplomenou M-A, Golia EE. Urban Soil Pollution by Heavy Metals: Effect of the Lockdown during the Period of COVID-19 on Pollutant Levels over a Five-Year Study. Soil Systems. 2023; 7(1):28. https://doi.org/10.3390/soilsystems7010028
Chicago/Turabian StylePapadimou, Sotiria G., Ourania-Despoina Kantzou, Maria-Anna Chartodiplomenou, and Evangelia E. Golia. 2023. "Urban Soil Pollution by Heavy Metals: Effect of the Lockdown during the Period of COVID-19 on Pollutant Levels over a Five-Year Study" Soil Systems 7, no. 1: 28. https://doi.org/10.3390/soilsystems7010028