# Quantum States for a Minimum-Length Spacetime

## Abstract

**:**

## 1. Introduction

## 2. Quantum Spacetime at a Point: Null States

## 3. A Quantum Observable for the Ricci Scalar

## 4. Description in Terms of Component Subsystems: Entropy

## 5. Conclusions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Deser, S. General relativity and the divergence problem in quantum field theory. Rev. Mod. Phys.
**1957**, 29, 417. [Google Scholar] [CrossRef] - Kadyshevsky, V.G. On the theory of quantization of space-time. Sov. Phys. JETP
**1962**, 14, 1340. [Google Scholar] - Mead, C.A. Possible connection between gravitation and fundamental length. Phys. Rev.
**1964**, 135, B849. [Google Scholar] [CrossRef] - DeWitt, B.S. Gravity: A universal regulator? Phys. Rev. Lett.
**1964**, 13, 114. [Google Scholar] [CrossRef] - Bekenstein, J.D. The quantum mass spectrum of the Kerr black hole. Lett. Nuovo Cim.
**1974**, 11, 467–470. [Google Scholar] [CrossRef] - Kadyshevsky, V.G. Fundamental length hypothesis and new concept of gauge vector field. Nucl. Phys. B
**1978**, 141, 477–496. [Google Scholar] [CrossRef] - DeWitt, B.S. Approximate effective action for quantum gravity. Phys. Rev. Lett.
**1981**, 47, 1647. [Google Scholar] [CrossRef] - Padmanabhan, T. Physical significance of Planck’s length. Ann. Phys.
**1985**, 165, 38. [Google Scholar] [CrossRef] - Padmanabhan, T. Planck length as the lower bound to all physical length scales. Gen. Rel. Grav.
**1985**, 17, 215–221. [Google Scholar] [CrossRef] - Amati, D.; Ciafaloni, M.; Veneziano, G. Can spacetime be probed below the string size? Phys. Lett.
**1989**, B216, 41–47. [Google Scholar] [CrossRef] - Garay, L.J. Quantum gravity and minimum length. Int. J. Mod. Phys. A
**1995**, 10, 145–165. [Google Scholar] [CrossRef] [Green Version] - Hossenfelder, S. Minimal length scale scenarios for quantum gravity. Liv. Rev. Rel.
**2013**, 16, 2. [Google Scholar] [CrossRef] [PubMed] - Kothawala, D. Minimal length and small scale structure of spacetime. Phys. Rev. D
**2013**, 88, 104029. [Google Scholar] [CrossRef] - Kothawala, D.; Padmanabhan, T. Grin of the Cheshire cat: Entropy density of spacetime as a relic from quantum gravity. Phys. Rev. D
**2014**, 90, 124060. [Google Scholar] [CrossRef] - Jaffino Stargen, D.; Kothawala, D. Small scale structure of spacetime: Van Vleck determinant and equi-geodesic surfaces. Phys. Rev. D
**2015**, 92, 024046. [Google Scholar] [CrossRef] - Pesci, A. Minimum-length Ricci scalar for null separated events. Phys. Rev. D
**2020**, 102, 124057. [Google Scholar] [CrossRef] - Pesci, A. Zero-point gravitational field equations. Class. Quantum Grav.
**2021**, 38, 145007. [Google Scholar] [CrossRef] - Pesci, A. Expectation values of minimum-length Ricci scalar. Int. J. Mod. Phys. D
**2022**, 31, 2250007. [Google Scholar] [CrossRef] - Hardy, L. The Construction Interpretation: Conceptual roads to quantum gravity. arXiv
**2018**, arXiv:1807.10980. [Google Scholar] - Hardy, L. Implementation of the quantum equivalence principle. Contribution to: Progress and Visions in Quantum Theory in View of Gravity. arXiv
**2019**, arXiv:1903.01289. [Google Scholar] - Giacomini, F.; Brukner, Č. Einstein’s Equivalence principle for superpositions of gravitational fields. arXiv
**2020**, arXiv:2012.13754. [Google Scholar] - Giacomini, F.; Castro-Ruiz, E.; Brukner, Č. Quantum mechanics and the covariance of physical laws in quantum reference frames. Nat. Commun.
**2019**, 10, 494. [Google Scholar] [CrossRef] - Bose, S.; Mazumdar, A.; Morley, G.W.; Ulbricht, H.; Toroš, M.; Paternostro, M.; Geraci, A.A.; Barker, P.F.; Kim, M.S.; Milburn, G. A spin entanglement witness for quantum gravity. Phys. Rev. Lett.
**2017**, 119, 240401. [Google Scholar] [CrossRef] [PubMed] - Marletto, C.; Vedral, V. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett.
**2017**, 119, 240402. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Penrose, R. On gravity’s role in quantum state reduction. Gen. Rel. Grav.
**1996**, 28, 581–600. [Google Scholar] [CrossRef] - Bao, N.; Carroll, S.M.; Singh, A. The Hilbert space of quantum gravity is locally finite-dimensional. Int. J. Mod. Phys. D
**2017**, 26, 1743013. [Google Scholar] [CrossRef] - Bekenstein, J.D. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D
**1981**, 23, 287–298. [Google Scholar] [CrossRef] - Hardy, L. Quantum theory from five reasonable axioms. arXiv
**2001**, arXiv:quant-ph/0101012. [Google Scholar] - Hardy, L. Reformulating and reconstructing quantum theory. arXiv
**2011**, arXiv:1104.2066. [Google Scholar] - Chiribella, G.; D’Ariano, G.M.; Perinotti, P. Probabilistic theories with purification. Phys. Rev. A
**2010**, 81, 062348. [Google Scholar] [CrossRef] - Chiribella, G.; D’Ariano, G.M.; Perinotti, P. Informational derivation of quantum theory. Phys. Rev. A
**2011**, 84, 012311. [Google Scholar] [CrossRef] - D’Ariano, G.M.; Chiribella, G.; Perinotti, P. Quantum Theory from First Principles: An Informational Approach; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Aharonov, Y.; Kaufherr, T. Quantum frames of reference. Phys. Rev. D
**1984**, 30, 368. [Google Scholar] [CrossRef] - Nicolini, P. Quantum gravity and the zero point length. arXiv
**2022**, arXiv:2208.05390. [Google Scholar] [CrossRef] - Peres, A. Quantum Theory: Concepts and Methods; Kluwer: New York, NY, USA, 2002. [Google Scholar]
- Marshman, R.J.; Mazumdar, A.; Bose, S. Locality & entanglement in table-top testing of the quantum nature of linearized gravity. Phys. Rev. A
**2020**, 101, 052110. [Google Scholar] - Christodoulou, M.; Rovelli, C. On the possibility of laboratory evidence for quantum superposition of geometries. Phys. Lett. B
**2019**, 792, 64–68. [Google Scholar] [CrossRef] - Nielsen, M.A.; Chuang, L.I. Quantum Computation and Quantum Information; 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Van Vleck, J.H. The correspondence principle in the statistical interpretation of quantum mechanics. Proc. Natl. Acad. Sci. USA
**1928**, 14, 178–188. [Google Scholar] [CrossRef] - Morette, C. On the definition and approximation of Feynman’s path integrals. Phys. Rev.
**1951**, 81, 848. [Google Scholar] [CrossRef] - DeWitt, B.S.; Brehme, R.W. Radiation damping in a gravitational field. Ann. Phys.
**1960**, 9, 220–259. [Google Scholar] [CrossRef] - DeWitt, B.S. The Dynamical Theory of Groups and Fields; Gordon and Breach: New York, NY, USA, 1965. [Google Scholar]
- Christensen, S.M. Vacuum expectation value of the stress tensor in an arbitrary curved background: The covariant point-separation method. Phys. Rev. D
**1976**, 14, 2490. [Google Scholar] [CrossRef] - Van Visser, M. Vleck determinants: Geodesic focussing and defocussing in Lorentzian spacetimes. Phys. Rev. D
**1993**, 47, 2395. [Google Scholar] [CrossRef] - Poisson, E.; Pound, A.; Vega, I. The motion of point particles in curved spacetime. Liv. Rev. Rel.
**2011**, 14, 7. [Google Scholar] [CrossRef] [PubMed] - Padmanabhan, T. Distribution function of the atoms of spacetime and the nature of gravity. Entropy
**2015**, 17, 7420–7452. [Google Scholar] [CrossRef] - Pesci, A. Effective null Raychaudhuri equation. Particles
**2018**, 1, 230–237. [Google Scholar] [CrossRef] - Pesci, A. Quantum metric for null separated events and spacetime atoms. Class. Quantum Grav.
**2019**, 36, 075009. [Google Scholar] [CrossRef] - Chakraborty, S.; Kothawala, D.; Pesci, A. Raychaudhuri equation with zero point length. Phys. Lett. B
**2019**, 797, 134877. [Google Scholar] [CrossRef] - Kothawala, D. Intrinsic and extrinsic curvatures in Finsleresque spaces. Gen. Rel. Grav.
**2014**, 46, 1836. [Google Scholar] [CrossRef] - Jacobson, T. Thermodynamics of spacetime: The Einstein equation of state. Phys. Rev. Lett.
**1995**, 75, 1260. [Google Scholar] [CrossRef] [Green Version] - Wald, R.M. Black hole entropy is Noether charge. Phys. Rev. D
**1993**, 48, 3427. [Google Scholar] [CrossRef] - Iyer, V.; Wald, R.M. A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes. Phys. Rev. D
**1995**, 52, 4430. [Google Scholar] [CrossRef] - Padmanabhan, T. Gravity and quantum theory: Domains of conflict and contact. Int. J. Mod. Phys. D
**2020**, 29, 2030001. [Google Scholar] [CrossRef] - Nicolini, P.; Spallucci, E.; Wondrak, M.F. Quantum corrected black holes from string T-duality. Phys. Lett. B
**2019**, 797, 134888. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pesci, A.
Quantum States for a Minimum-Length Spacetime. *Particles* **2022**, *5*, 426-441.
https://doi.org/10.3390/particles5040033

**AMA Style**

Pesci A.
Quantum States for a Minimum-Length Spacetime. *Particles*. 2022; 5(4):426-441.
https://doi.org/10.3390/particles5040033

**Chicago/Turabian Style**

Pesci, Alessandro.
2022. "Quantum States for a Minimum-Length Spacetime" *Particles* 5, no. 4: 426-441.
https://doi.org/10.3390/particles5040033