Short-Term Response of Ground Beetles (Coleoptera: Carabidae) to Fire in Formerly Managed Coniferous Forest in Central Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Design of Study
2.2. Beetle Sampling and Identification
2.3. Data Analysis
3. Results
3.1. Communities of Ground Beetles
3.2. Ground Beetle Guilds
4. Discussion
4.1. Ground Beetle Abundance
4.2. Ground Beetle Richness and Communities
4.3. Pyrophilous Ground Beetle
4.4. Ground Beetle Guilds
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Chapin, F.S.; Stackhouse, P.W. Climate-Induced Boreal Forest Change: Predictions Versus Current Observations. Glob. Planet. Chang. 2007, 56, 274–296. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Noss, R.F.; Bussler, H.; Brandl, R. Learning from a “benign neglect strategy” in a national park: Response of saproxylic beetles to dead wood accumulation. Biol. Conserv. 2010, 143, 2559–2569. [Google Scholar] [CrossRef]
- Zumr, V.; Remeš, J.; Pulkrab, K. How to Increase Biodiversity of Saproxylic Beetles in Commercial Stands Through Integrated Forest Management in Central Europe. Forests 2021, 12, 814. [Google Scholar] [CrossRef]
- Zumr, V.; Nakládal, O.; Bílek, L.; Remeš, J. The Diameter of Beech Snags is an Important Factor for Saproxylic Beetle Richness: Implications for Forest Management and Conservation. For. Ecosyst. 2023, 10, 100143. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Wambsganss, J.; Stutz, K.P.; Lang, F. European beech deadwood can increase soil organic carbon sequestration in forest topsoils. For. Ecol. Manag. 2017, 405, 200–209. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Lasota, J.; Błońska, E. Interspecific Variability of Water Storage Capacity and Absorbability of Deadwood. Forests 2020, 11, 575. [Google Scholar] [CrossRef]
- Błońska, E.; Prażuch, W.; Lasota, J. Deadwood affects the soil organic matter fractions and enzyme activity of soils in altitude gradient of temperate forests. For. Ecosyst. 2023, 10, 100115. [Google Scholar] [CrossRef]
- Moriarty, K.; Cheng, A.S.; Hoffman, C.M.; Cottrell, S.P.; Alexander, M.E. Firefighter Observations of “Surprising” Fire Behavior in Mountain Pine Beetle-Attacked Lodgepole Pine Forests. Fire 2019, 2, 34. [Google Scholar] [CrossRef]
- Berčák, R.; Holuša, J.; Kaczmarowski, J.; Tyburski, Ł.; Szczygieł, R.; Held, A.; Vacik, H.; Slivinský, J.; Chromek, I. Fire Protection Principles and Recommendations in Disturbed Forest Areas in Central Europe: A Review. Fire 2023, 6, 310. [Google Scholar] [CrossRef]
- Tinner, W.; Conedera, M.; Ammann, B.; Lotter, A.F. Fire ecology north and south of the Alps since the last ice age. Holocene 2005, 15, 1214–1226. [Google Scholar] [CrossRef]
- Berčák, R.; Holuša, J.; Lukášová, K.; Hanuška, Z.; Agh, P.; Vaněk, J.; Kula, E.; Chromek, I. Forest fires in the Czech Republic—Characteristic, prevention and firefighting: Review. Zprávy Lesn. Výzkumu 2018, 63, 184–194. [Google Scholar]
- Pérez-Valera, E.; Verdú, M.; Navarro-Cano, J.A.; Goberna, M. Soil microbiome drives the recovery of ecosystem functions after fire. Soil Biol. Biochem. 2020, 149, 107948. [Google Scholar] [CrossRef]
- Lebedinskii, A.A.; Noskova, O.S.; Dmitriev, A.I. Post-fire recovery of terrestrial vertebrates in the Kerzhensky State Nature Biosphere Reserve (Central Volga Region, Russia). Nat. Conserv. Res. 2019, 4 (Suppl. 1), 45–56. [Google Scholar] [CrossRef]
- Mason, S.C.; Shirey, V.; Ponisio, L.C.; Gelhaus, J.K. Responses from bees, butterflies, and ground beetles to different fire and site characteristics: A global meta-analysis. Biol. Conserv. 2021, 261, 109265. [Google Scholar] [CrossRef]
- Dzwonko, Z.; Loster, S.; Gawroński, S. Impact of fire severity on soil properties and the development of tree and shrub species in a Scots pine moist forest site in southern Poland. For. Ecol. Manag. 2015, 342, 56–63. [Google Scholar] [CrossRef]
- Valkó, O.; Deák, B.; Magura, T.; Török, P.; Kelemen, A.; Tóth, K.; Horváth, R.; Nagy, D.D.; Debnár, Z.; Zsigrai, G.; et al. Supporting biodiversity by prescribed burning in grasslands—A multi-taxa approach. Sci. Total Environ. 2016, 572, 1377–1384. [Google Scholar] [CrossRef]
- Gongalsky, K.B.; Persson, T. Recovery of Soil Macrofauna After Wildfires in Boreal Forests. Soil Biol. Biochem. 2013, 57, 182–191. [Google Scholar] [CrossRef]
- Malmström, A. Life-History Traits Predict Recovery Patterns in Collembola Species After Fire: A 10 Year Study. Appl. Soil Ecol. 2012, 56, 35–42. [Google Scholar] [CrossRef]
- Gongalsky, K.; Midtgaard, F.; Overgaard, H. Effects of Prescribed Forest Burning on Carabid Beetles (Coleoptera: Carabidae). Entomol. Fenn. 2006, 17, 325–333. [Google Scholar] [CrossRef]
- Muona, J.; Rutanen, I. The short-term impact of fire on the beetle fauna in boreal coniferous forest. Ann. Entomol. Fenn. 1994, 31, 109–121. [Google Scholar]
- Toivanen, T.; Heikkilä, T.; Koivula, M.J. Emulating natural disturbances in boreal Norway spruce forests: Effects on ground beetles (Coleoptera, Carabidae). For. Ecol. Manag. 2014, 314, 64–74. [Google Scholar] [CrossRef]
- Ruchin, A.B.; Egorov, L.V.; MacGowan, I.; Makarkin, V.N.; Antropov, A.V.; Gornostaev, N.G.; Khapugin, A.A.; Dvořák, L.; Esin, M.N. Post-fire insect fauna explored by crown fermental traps in forests of the European Russia. Sci. Rep. 2021, 11, 21334. [Google Scholar] [CrossRef] [PubMed]
- Elia, M.; Lafortezza, R.; Tarasco, E.; Colangelo, G.; Sanesi, G. The spatial and temporal effects of fire on insect abundance in Mediterranean forest ecosystems. For. Ecol. Manag. 2012, 263, 262–267. [Google Scholar] [CrossRef]
- Lazarina, M.; Sgardelis, S.P.; Tscheulin, T.; Devalez, J.; Mizerakis, V.; Kallimanis, A.S.; Papakonstantinou, S.; Kyriazis, T.; Petanidou, T. The effect of fire history in shaping diversity patterns of flower-visiting insects in post-fire Mediterranean pine forests. Biodivers. Conserv. 2017, 26, 115–131. [Google Scholar] [CrossRef]
- Hochkirch, A.; Adorf, F. Effects of prescribed burning and wildfires on Orthoptera in Central European peat bogs. Environ. Conserv. 2007, 34, 225–235. [Google Scholar] [CrossRef]
- Bogusch, P.; Blažej, L.; Trýzna, M.; Heneberg, P. Forgotten role of fires in Central European forests: Critical importance of early post-fire successional stages for bees and wasps Hymenoptera. Eur. J. For. Res. 2015, 134, 153–166. [Google Scholar] [CrossRef]
- Błońska, E.; Bednarz, B.; Kacprzyk, M.; Piaszczyk, W.; Lasota, J. Effect of scots pine forest management on soil properties and carabid beetle occurrence under post-fire environmental conditions—A case study from Central Europe. For. Ecosyst. 2020, 7, 28. [Google Scholar] [CrossRef]
- Gutowski, J.M.; Sućko, K.; Borowski, J.; Kubisz, D.; Mazur, M.A.; Melke, A.; Mokrzycki, T.; Plewa, R. Post-fire beetle succession in a biodiversity hotspot: Białowieża Primeval Forest. For. Ecol. Manag. 2020, 461, 117893. [Google Scholar] [CrossRef]
- Blažej, L. Groung beetles (Coleoptera: Carabidae) of the forest burnt in Jetřichovice (Northern Bohemia). In Vlastivědný Sborník Českolipska 32/2023; BEZDĚZ: Česká Lípa, Czech Republic, 2023. [Google Scholar]
- Podrázský, V.; Remeš, J.; Farkač, J. Composition of communities of ground beetles (Coleoptera: Carabidae) in forest stands with different species structure and management system. Rep. For. Res. Rep. 2010, 55, 10–15. [Google Scholar]
- Pfiffner, L.; Luka, H. Effects of low-input farming systems on carabids and epigeal spiders—A paired farm approach. Basic Appl. Ecol. 2003, 4, 117–127. [Google Scholar] [CrossRef]
- Niemelä, J.; Koivula, M.; Kotze, D.J. The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. J. Insect Conserv. 2007, 11, 5–18. [Google Scholar] [CrossRef]
- Skłodowski, J. Consequence of the transformation of a primeval forest into a managed forest for carabid beetles (Coleoptera: Carabidae)—A case study from Białowieża (Poland). Eur. J. Entomol. 2014, 111, 639–648. [Google Scholar] [CrossRef]
- Pearce, J.L.; Venier, L.A. The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management. Ecol. Indic. 2006, 6, 780–793. [Google Scholar] [CrossRef]
- Plath, E.; Trauth, C.; Gerhards, J.; Griebel, L.; Fischer, K. Dieback of Managed Spruce Stands in Western Germany Promotes Beetle Diversity. J. For. Res. 2024, 35, 48. [Google Scholar] [CrossRef]
- Bell, A.J. Like moths to a flame: A review of what we know about pyrophilic insects. For. Ecol. Manag. 2023, 528, 120629. [Google Scholar] [CrossRef]
- Schmitz, H.; Schmitz, A.; Kreiss, E.; Gebhardt, M.; Gronenberg, W. Navigation to Forest Fires by Smoke and Infrared Reception: The Specialized Sensory Systems of “Fire-Loving” Beetles. Navigation 2008, 55, 137–145. [Google Scholar] [CrossRef]
- Suckling, D.M.; Gibb, A.R.; Daly, J.M.; Chen, X.; Brockerhoff, E.G. Behavioral and Electrophysiological Responses of Arhopalus tristis to Burnt Pine and Other Stimuli. J. Chem. Ecol. 2001, 27, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Hinz, M.; Klein, A.; Schmitz, A.; Schmitz, H.; Engelmann, J. The Impact of Infrared Radiation in Flight Control in the Australian “Firebeetle” Merimna Atrata. PLoS ONE 2018, 13, e0192865. [Google Scholar] [CrossRef] [PubMed]
- Gongalsky, K.B.; Wikars, L.-O.; Persson, T. Dynamics of pyrophilous carabids in a burned pine forest in Central Sweden. Balt. J. Coleopterol. 2003, 3, 107–111. [Google Scholar]
- Bell, A.J.; Calladine, K.S.; Wardle, D.A.; Phillips, I.D. Rapid colonization of the post-burn environment improves egg survival in pyrophilic ground beetles. Ecosphere 2022, 13, e4213. [Google Scholar] [CrossRef]
- Schmid, J. Tribe Platynini Bonelli. Catalogue of Palaearctic Coleoptera. In Archostemata—Myxophaga—Adephaga; Löbl, I., Löbl, D., Eds.; Revised and Updated Edition; Brill: Leiden, The Netherlands; Boston, MA, USA, 2017; Volume 1, pp. 642–675. [Google Scholar]
- Vébrová, D.; Härtel, H. (Eds.) Care Principles for the Czech Switzerland National Park 2022–2041; Czech Switzerland National Park Administration: Krásná Lípa, Czech Republic, 2022. [Google Scholar]
- Drozd, J.; Härtel, H.; Klitsch, M. Péče o Lesní Ekosystémy v Národním Parku České Švýcarsko. Ochrana přírody 1/2010—Péče o Přírodu a Krajinu. Available online: https://www.casopis.ochranaprirody.cz/pece-o-prirodu-a-krajinu/pece-o-lesni-ekosystemy-v-narodnim-parku-ceske-svycarsko/ (accessed on 7 January 2024).
- Czech Forest Reports. Report on the State of Forests and Forestry in the Czech Republic in 2021; Ministerstvo Zemědělství: Prague, Czech Republic, 2022; ISBN 978-80-7434-669-9. Available online: https://eagri.cz/public/portal/-q266433---jF_7lFFI/zprava-o-stavu-lesa-a-lesniho?_linka=a235209 (accessed on 4 January 2024).
- Hruška, J. Jaké Faktory Ovlivnily Vznik a Šíření Požáru v NP České Švýcarsko? Factors Involved in the Origin and Spread of the Fire in Bohemian Switzerland in 2022: In Ministry of the Environment. 2022. Available online: https://www.mzp.cz/C1257458002F0DC7/cz/news_20220106-Vedci-zmapovali-pozar-v-Ceskem-Svycarsku-Majitele-lesu-se-z-nej-musi-ponaucit-Pro-prirodu-ale-znamena-probihajici-obnova-velkou-sanci/$FILE/Studie_faktoru_pozaru_Narodni_park_Ceske_Svycarsko.pdf (accessed on 10 February 2024).
- Montgomery, G.A.; Belitz, M.W.; Guralnick, R.P.; Tingley, M.W. Standards and Best Practices for Monitoring and Benchmarking Insects. Front. Ecol. Evol. 2021, 8, 513. [Google Scholar] [CrossRef]
- Phillips, I.D.; Cobb, T.P. Effects of Habitat Structure and Lid Transparency on Pitfall Catches. Environ. Entomol. 2005, 34, 875–882. [Google Scholar] [CrossRef]
- Brown, G.R.; Matthews, I.M. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol. Evol. 2016, 6, 3953–3964. [Google Scholar] [CrossRef]
- Császár, P.; Torma, A.; Gallé-Szpisjak, N.; Tölgyesi, C.; Gallé, R. Efficiency of pitfall traps with funnels and/or roofs in capturing ground-dwelling arthropods. Eur. J. Entomol. 2018, 115, 15–24. [Google Scholar] [CrossRef]
- Nakládal, O.; Havránková, E.; Zumr, V. Trapping liquids may bias the results of beetle diversity assessment. PeerJ 2023, 11, e16531. [Google Scholar] [CrossRef]
- Nakládal, O. Results of a faunistic survey of beetles (Coleoptera) in floodplain forests of the Litovelské Pomoraví Protected Landscape Area (Czech Republic, Northern Moravia) in 2006. Klapalekiana 2008, 44, 237–269. [Google Scholar]
- Nakládal, O. Results of a faunistic survey of beetles (Coleoptera) in Vrapač National Nature Reserve (Czech Republic, Northern Moravia, Litovelské Pomoraví Protected Landscape Area) in 2009. Klapalekiana 2011, 47, 213–236. [Google Scholar]
- Nakládal, O. Results of a faunistics survey of beetles (Coleoptera) in Hejtmanka Nature Reserve (Czech Republic, Northern Moravia, Litovelské Pomoraví Protected Landscape Area) in 2009. Acta Musei Beskidensis 2011, 3, 103–129. [Google Scholar]
- Nakládal, O. Results of beetles (Coleoptera) survey of Zástudánčí National Nature Reserve (Central Moravia) 2008—Part 1. Časopis Slez. Zemského Muz. 2011, 60, 63–78. [Google Scholar] [CrossRef]
- Zicha, O. BioLib: Biological Library. Available online: https://www.biolib.cz (accessed on 9 December 2023).
- Hejda, R.; Farkač, J.; Chobot, K. Red List of Threatened Species of the Czech Republic; Agentura Ochrany Přírody a Krajiny České Republiky, Příroda: Prague, Czech Republic, 2017; ISBN 978-80-88076-53-7. [Google Scholar]
- Schneider, A.; Blick, T.; Pauls, S.U.; Dorow, W.H.O. The List of Forest Affinities for Animals in Central Europe—A Valuable Resource for Ecological Analysis and Monitoring in Forest Animal Communities? For. Ecol. Manag. 2021, 479, 118542. [Google Scholar] [CrossRef]
- Lompe, A. Die Käfer Europas: Ein Bestimmungswerk im Internet, ‘Beetles of Europe: An Online Identification Resource 2002’. Available online: http://www.coleo-net.de/coleo/index.htm (accessed on 15 December 2023).
- Hůrka, K. Carabidae of the Czech and Slovak Republics; Kabourek: Zlin, Czech Republic, 1996; p. 565. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing_; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 20 December 2023).
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. GlmmTMB balances speed and flexibility among packages for Zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package 2022. R package version 2.6-2. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 2 February 2024).
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Cáceres, M.D.; Legendre, P. Associations Between Species and Groups of Sites: Indices and Statistical Inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: iNterpolation and EXTrapolation for Species Diversity. R Package Version 3.0.0. 2022. Available online: http://chao.stat.nthu.edu.tw/wordpress/software-download/ (accessed on 25 February 2024).
- Graf, M.; Seibold, S.; Gossner, M.M.; Hagge, J.; Weiß, I.; Bässler, C.; Müller, J. Coverage based diversity estimates of facultative saproxylic species highlight the importance of deadwood for biodiversity. For. Ecol. Manag. 2022, 517, 120275. [Google Scholar] [CrossRef]
- Martikainen, P.; Kouki, J.; Heikkala, O. The Effects of Green Tree Retention and Subsequent Prescribed Burning on Ground Beetles (Coleoptera: Carabidae) in Boreal Pine-Dominated Forests. Ecography 2006, 29, 659–670. [Google Scholar] [CrossRef]
- Saint-Germain, M.; Larrivée, M.; Drapeau, P.; Fahrig, L.; Buddle, C.M. Short-Term Response of Ground Beetles (Coleoptera: Carabidae) to Fire and Logging in A Spruce-Dominated Boreal Landscape. For. Ecol. Manag. 2005, 212, 118–126. [Google Scholar] [CrossRef]
- Du Bus de Warnaffe, G.; Lebrun, P. Effects of Forest Management on Carabid Beetles in Belgium: Implications for Biodiversity Conservation. Biol. Conserv. 2004, 118, 219–234. [Google Scholar] [CrossRef]
- Zumr, V.; Nakládal, O.; Remeš, J.; Brestovanská, T.; Zumr, V. Diversity of Click Beetles in Managed Nonnative Coniferous and Native Beech Stands: Consequences of Changes in the Structural and Species Composition of Tree Stands in Central Europe. For. Ecosyst. 2022, 9, 100057. [Google Scholar] [CrossRef]
- Hilmers, T.; Friess, N.; Bässler, C.; Heurich, M.; Brandl, R.; Pretzsch, H.; Seidl, R.; Müller, J.; Butt, N. Biodiversity along Temperate Forest Succession. J. Appl. Ecol. 2018, 55, 2756–2766. [Google Scholar] [CrossRef]
- Schall, P.; Gossner, M.M.; Heinrichs, S.; Fischer, M.; Boch, S.; Prati, D.; Jung, K.; Baumgartner, V.; Blaser, S.; Böhm, S.; et al. The Impact of Even-Aged and Uneven-Aged Forest Management on Regional Biodiversity of Multiple Taxa in European Beech Forests. J. Appl. Ecol. 2018, 55, 267–278. [Google Scholar] [CrossRef]
- Mason, S.C., Jr.; Shirey, V.; Waite, E.S.; Gallagher, M.R.; Skowronski, N.S. Exploring Prescribed Fire Severity Effects on Ground Beetle (Coleoptera: Carabidae) Taxonomic and Functional Community Composition. Fire 2023, 6, 366. [Google Scholar] [CrossRef]
- Perlík, M.; Kraus, D.; Bußler, H.; Neudam, L.; Pietsch, S.; Mergner, U.; Seidel, D.; Sebek, P.; Thorn, S. Canopy Openness As the Main Driver of Aculeate Hymenoptera and Saproxylic Beetle Diversity Following Natural Disturbances and Salvage Logging. For. Ecol. Manag. 2023, 540, 121033. [Google Scholar] [CrossRef]
- Vera, F.W.M. (Ed.) Grazing Ecology and Forest History; CABI: Wallingford, UK, 2000. [Google Scholar] [CrossRef]
- Sroka, K.; Finch, O.-D. Ground Beetle Diversity in Ancient Woodland Remnants in North-Western Germany (Coleoptera, Carabidae). J. Insect Conserv. 2006, 10, 335–350. [Google Scholar] [CrossRef]
- Wikars, L.O. Dependence on Fire in Wood-living Insects: An Experiment with Burned and Unburned Spruce and Birch Logs. J. Insect Conserv. 2002, 6, 1–12. [Google Scholar] [CrossRef]
- Koivula, M.; Cobb, T.; Déchêne, A.D.; Jacobs, J.; Spence, J.R. Re-sponses of two Sericoda Kirby, 1837 (Coleoptera: Carabidae) species to forestharvesting, wildfire, and burn severity. Entomol. Fennica 2006, 17, 315–324. [Google Scholar] [CrossRef]
- Zúñiga, A.H.; Rau, J.R.; Fierro, A.; Vergara, P.M.; Encina-Montoya, F.; Fuentes-Ramírez, A.; Jaksic, F.M. Fire Severity Causes Temporal Changes in Ground-Dwelling Arthropod Assemblages of Patagonian Araucaria–Nothofagus Forests. Fire 2022, 5, 168. [Google Scholar] [CrossRef]
- Negro, M.; Casale, A.; Migliore, L.; Palestrini, C.; Rolando, A. Habitat use and movement patterns in the endangered ground beetle species, Carabus olympiae (Coleoptera: Carabidae). Eur. J. Entomol. 2008, 105, 105–112. [Google Scholar] [CrossRef]
- Cobb, T.P.; Langor, D.W.; Spence, J.R. Biodiversity and Multiple Disturbances: Boreal Forest Ground Beetle (Coleoptera: Carabidae) Responses to Wildfire, Harvesting, and Herbicide. Can. J. For. Res. 2007, 37, 1310–1323. [Google Scholar] [CrossRef]
- Parajuli, R.; Markwith, S.H. Quantity is Foremost But Quality Matters: A Global Meta-Analysis of Correlations of Dead Wood Volume and Biodiversity in Forest Ecosystems. Biol. Conserv. 2023, 283, 110100. [Google Scholar] [CrossRef]
Habitats Schneider et al. [62] | mainly found in forests, without preference for light or closed forests | F |
mainly found in forests, with strong affinity to closed forest habitats | FC | |
mainly found in forests, with strong affinity to light forests, forest edges, or glades | FL | |
occurring equally in open landscapes and forest habitats | MM | |
strong affinity to open landscapes, but also regularly occurring in forests, at forest edges, or in glades | MO | |
only occurring in open landscapes or other habitats without forest cover like caves or buildings | O | |
Body size Lompe [63] | small < 10 mm; large > 10 mm | |
Flight ability Hůrka [64] | (1) flight capable and predominantly flight capable (macropterous); (2) flight incapable or predominantly flightless (brachypterous); (3) for species exhibiting variations within their population, such as combinations where part of the population can fly and part cannot, these were classified as flight/non-flight (both). |
Species | Clear-Cut Unburnt | Clear-Cut Burnt | Dead Spruce Unburnt | Dead Spruce Burnt | Healthy Burnt | Healthy Unburnt | Sum |
---|---|---|---|---|---|---|---|
Carabus violaceus (Linnaeus, 1758) | 156 | 16 | 538 *** | 29 | 37 | 76 | 852 |
Carabus hortensis (Linnaeus, 1758) | 54 | 2 | 226 | 12 | 40 | 492 *** | 826 |
Poecilus versicolor (Sturm, 1824) | 544 *** | 19 | 158 | 15 | 49 | 785 | |
Nebria brevicollis (Fabricius, 1792) | 1 | 2 | 2 | 3 | 644 *** | 652 | |
Carabus problematicus (Herbst, 1786) | 131 | 27 | 87 | 27 | 54 | 97 | 423 |
Pterostichus quadrifoveolatus (Letzner, 1852) | 89 | 51 | 253 *** | 393 | |||
Carabus intricatus (Linnaeus, 1761) | 38 | 7 | 205 * | 28 | 16 | 294 | |
Bembidion lampros (Herbst, 1784) | 59 | 39 | 23 | 65 | 93 | 279 | |
Pterostichus niger (Schaller, 1783) | 49 | 1 | 105 *** | 28 | 8 | 12 | 203 |
Amara lunicollis (Schiödte, 1837) | 62 | 7 | 58 | 7 | 37 | 171 | |
Notiophilus biguttatus (Fabricius, 1779) | 2 | 11 | 16 | 27 | 58 *** | 11 | 125 |
Harpalus rufipes (DeGeer, 1774) | 5 | 11 | 14 | 17 | 65 . | 112 | |
Pterostichus oblongopunctatus (Fabr., 1787) | 10 | 74 ** | 2 | 14 | 5 | 105 | |
Calathus erratus (C.R. Sahlberg, 1827) | 22 | 1 | 77 . | 100 | |||
Harpalus latus (Linnaeus, 1758) | 47 *** | 2 | 8 | 3 | 4 | 64 | |
Abax parallelepipedus (Pill & Mitt, 1783) | 1 | 3 | 41 . | 1 | 6 | 11 | 63 |
Cychrus attenuatus (Fabricius, 1792) | 2 | 60 *** | 62 | ||||
Harpalus solitaris (Dejean, 1829) | 12 | 26 . | 1 | 3 | 7 | 48 | |
Carabus coriaceus (Linnaeus, 1758) | 38 *** | 38 | |||||
Amara plebeja (Gyllenhal, 1810) | 3 | 1 | 1 | 2 | 25 * | 32 | |
Poecilus cupreus (Linnaeus, 1758) | 23 *** | 3 | 5 | 1 | 32 | ||
Cicindela campestris (Linnaeus, 1758) | 10 | 8 | 2 | 8 | 28 | ||
Poecilus lepidus (Leske, 1787) | 5 | 22 . | 27 | ||||
Microlestes minutulus (Goeze, 1777) | 1 | 11 . | 2 | 5 | 5 | 24 | |
Carabus arvensis (Herbst, 1784) | 5 | 1 | 11 . | 3 | 2 | 22 | |
Abax ovalis (Duftschmid, 1812) | 20 *** | 20 | |||||
Harpalus affinis (Schrank, 1781) | 7 | 7 | 4 | 18 | |||
Calathus fuscipes (Goeze, 1777) | 3 | 2 | 9 | 2 | 16 | ||
Notiophilus palustris (Duftschmid, 1812) | 6 | 1 | 3 | 2 | 2 | 14 | |
Harpalus rufipalpis (Sturm, 1818) | 1 | 1 | 10 . | 12 | |||
Amara bifrons (Gyllenhal, 1810) | 10 | 10 | |||||
Agonum sexpunctatum (Linnaeus, 1758) | 6 | 3 | 9 | ||||
Leistus rufomarginatus (Duftschmid, 1812) | 2 | 1 | 6 | 9 | |||
Carabus auronitens (Fabricius, 1792) | 7 * | 1 | 8 | ||||
Carabus linnei (Panzer, 1810) | 1 | 4 | 3 | 8 | |||
Cymindis cingulata (Dejean, 1825) | 4 | 1 | 1 | 2 | 8 | ||
Cychrus caraboides (Linnaeus, 1758) | 4 . | 1 | 5 | ||||
Notiophilus aestuans (Dejean, 1826) | 1 | 2 | 2 | 5 | |||
Sericoda quadripunctata (De Geer, 1774) | 4 . | 1 | 5 | ||||
Trechus quadristriatus (Schrank, 1781) | 3 | 2 | 5 | ||||
Carabus nemoralis (O.F. Müller, 1821) | 4 | 4 | |||||
Bembidion properans (Stephens, 1828) | 1 | 2 | 3 | ||||
Pterostichus aethiops (Panzer, 1797) | 2 | 1 | 3 | ||||
Pterostichus burmeisteri (Heer, 1841) | 1 | 1 | 1 | 3 | |||
Amara curta (Dejean, 1828) | 2 . | 2 | |||||
Amara equestris (Duftschmid, 1812) | 1 | 1 | 2 | ||||
Bembidion quadrimaculatum (Linnaeus, 1761) | 1 | 1 | 2 | ||||
Dromius agilis (Fabricius, 1787) | 2 . | 2 | |||||
Harpalus rubripes (Duftschmid, 1812) | 1 | 1 | 2 | ||||
Pterostichus nigrita (Paykull, 1790) | 2 | 2 | |||||
Tachyta nana (Gyllenhal, 1810) | 1 | 1 | 2 | ||||
Acupalpus flavicollis (Sturm, 1825) | 1 | 1 | |||||
Amara ovata (Fabricius, 1792) | 1 | 1 | |||||
Asaphidion flavipes (Linnaeus, 1761) | 1 | 1 | |||||
Bembidion guttula (Fabricius, 1792) | 1 | 1 | |||||
Bembidion mannerheimii (C.R. Sahlberg, 1827) | 1 | 1 | |||||
Bradycellus harpalinus (Audinet-Serv, 1821) | 1 | 1 | |||||
Harpalus laevipes (Zetterstedt, 1828) | 1 | 1 | |||||
Pterostichus melanarius (Illiger, 1798) | 1 | 1 | |||||
Pterostichus minor (Gyllenhal, 1827) | 1 | 1 | |||||
Stomis pumicatus (Panzer, 1796) | 1 | 1 | |||||
Syntomus truncatellus (Linnaeus, 1761) | 1 | 1 | |||||
Synuchus vivalis (Illiger, 1798) | 1 | 1 | |||||
SUM | 1248 | 335 | 1599 | 359 | 1574 | 837 | 5972 |
Guilds | Flight Ability | Body Size | Pyrophilous | Habitat | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yes | No | Both | Small | Large | Yes | No | F | FC | FL | MM | MO | O | |
No. of Species | 34 | 24 | 5 | 31 | 32 | 2 | 61 | 9 | 6 | 6 | 9 | 12 | 21 |
No. of Indivs. | 2737 | 3052 | 163 | 1628 | 4324 | 398 | 5554 | 1703 | 129 | 461 | 1904 | 558 | 1197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zumr, V.; Remeš, J.; Nakládal, O. Short-Term Response of Ground Beetles (Coleoptera: Carabidae) to Fire in Formerly Managed Coniferous Forest in Central Europe. Fire 2024, 7, 76. https://doi.org/10.3390/fire7030076
Zumr V, Remeš J, Nakládal O. Short-Term Response of Ground Beetles (Coleoptera: Carabidae) to Fire in Formerly Managed Coniferous Forest in Central Europe. Fire. 2024; 7(3):76. https://doi.org/10.3390/fire7030076
Chicago/Turabian StyleZumr, Václav, Jiří Remeš, and Oto Nakládal. 2024. "Short-Term Response of Ground Beetles (Coleoptera: Carabidae) to Fire in Formerly Managed Coniferous Forest in Central Europe" Fire 7, no. 3: 76. https://doi.org/10.3390/fire7030076
APA StyleZumr, V., Remeš, J., & Nakládal, O. (2024). Short-Term Response of Ground Beetles (Coleoptera: Carabidae) to Fire in Formerly Managed Coniferous Forest in Central Europe. Fire, 7(3), 76. https://doi.org/10.3390/fire7030076