The Interacting Influence of Fire and Tree Characteristics on Douglas-Fir Beetle Host-Tree Selection Five Years Post-Fire
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romme, W.H.; Floyd, L.M.; Crist, M.R. Historical Range of Variability and Current Landscape Condition Analysis: South Central Highlands Section, Southwestern Colorado & Northwestern New Mexico; Colorado Forest Restoration Institute: Fort Collins, CO, USA, 2009. [Google Scholar]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H.; Sibold, J.S. ENSO and PDO Variability Affect Drought-Induced Fire Occurrence in Rocky Mountain Subalpine Forests. Ecol. Appl. 2005, 15, 2000–2014. [Google Scholar] [CrossRef]
- Rodman, K.C.; Andrus, R.A.; Butkiewicz, C.L.; Chapman, T.B.; Gill, N.S.; Harvey, B.J.; Kulakowski, D.; Tutland, N.J.; Veblen, T.T.; Hart, S.J. Effects of Bark Beetle Outbreaks on Forest Landscape Pattern in the Southern Rocky Mountains, U. S.A. Remote Sens. 2021, 13, 1089. [Google Scholar] [CrossRef]
- Bentz, B.J.; Rgnire, J.; Fettig, C.J.; Hansen, E.M.; Hayes, J.L.; Hicke, J.A.; Kelsey, R.G.; Negron, J.F.; Seybold, S.J. Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects. Bioscience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Grissino-Mayer, H.D.; Romme, W.H.; Floyd, M.L.; Hanna, D.D. Climatic and human influences on fire regimes of the southern San Juan mountains, Colorado, USA. Ecology 2004, 85, 1708–1724. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U. S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.M.; Varner, J.M.; Metz, M.R.; van Mantgem, P.J. Characterizing Interactions between Fire and Other Disturbances and Their Impacts on Tree Mortality in Western U. S. Forests. Ecol Manag. 2017, 405, 188–199. [Google Scholar] [CrossRef]
- Remke, M.J.; Chambers, M.E.; Tuten, M.C.; Pelz, K.A. Mixed Conifer Forests in the San Juan Mountains Region of Colorado, USA: The Status of Our Knowledge and Management Implications; Colorado Forest Restoration Institute Report—2110; Colorado Forest Restoration Institute: Fort Collins, CO, USA, 2021. [Google Scholar]
- Lousier, J.D.; Joseph, D.; Kessler, W.B. Ecology and Management of Interior Douglas-Fir (Pseudotsuga Menziesii Var Glauca) at the Northern Extreme of Its Range: Proceedings of a Workshop Held 7–9 October, 1996; Faculty of Natural Resources & Environmental Studies, University of Northern British Columbia: Fort St. James, BC, USA, 1999; ISBN 0968633609. [Google Scholar]
- Schmitz, R.; Gibson, K. Douglas-Fir Beetle. In USDA Forest Service, Forest Insect and Disease Leaflet; Report R1-96-87; Utah State University: Logan, UT, USA, 1996; pp. 5–7. [Google Scholar]
- McMullen, L.H.; Atkins, M.D. On the Flight and Host Selection of the Douglas-Fir Beetle, Dendroctonus Pseudotsugae Hopk. (Cdeoptera: Scolytidae). Can. Entomol. 1962, 94, 1309–1325. [Google Scholar] [CrossRef]
- Negron, J.F. Probability of Infestation and Extent of Mortality Associated with the Douglas-Fir Beetle in the Colorado Front Range. Ecol Manag. 1998, 107, 71–85. [Google Scholar] [CrossRef]
- Powers, J.S.; Sollins, P.; Harmon, M.E.; Jones, J.A. Plant-Pest Interactions in Time and Space: A Douglas-Fir Bark Beetle Outbreak as a Case Study. Landsc. Ecol. 1999, 14, 105–120. [Google Scholar] [CrossRef]
- Dodds, K.J.; Garman, S.L.; Ross, D.W. Landscape Analyses of Douglas-Fir Beetle Populations in Northern Idaho. Ecol. Manag. 2006, 231, 119–130. [Google Scholar] [CrossRef]
- Mcmillin, J.D.; Allen, K.K. Effects of Douglas-fir beetle (Coleoptera: Scolytidae) infestations on forest overstory and understory conditions in western Wyoming. West. N. Am. Nat. 2003, 63, 498–506. [Google Scholar]
- Allen, G.S.; Owens, J.N. The Life History of Douglas Fir. Environment Canada Forestry Service: Ottawa, ON, Canada, 1972. [Google Scholar]
- Cunningham, C.A.; Jenkins, M.J.; Roberts, D.W. Attack and brood production by the Douglas-fir beetle (Coleoptera: Scolytidae) in Douglas-fir, Pseudotsuga menziesii var. Glauca (Pinaceae), following a wildfire. West. N. Am. Nat. 2005, 65, 70–79. [Google Scholar]
- Furniss, M.M. Susceptibility of Fire-Injured Douglas-Fir to Bark Beetle Attack in Southern Idaho. J. For. 1965, 63, 8–11. [Google Scholar]
- Hood, S.; Bentz, B. Predicting Postfire Douglas-Fir Beetle Attacks and Tree Mortality in the Northern Rocky Mountains. Can. J. For. Res. 2007, 37, 1058–1069. [Google Scholar] [CrossRef]
- Kitchens, K.A.; Peng, L.; Daniels, L.D.; Carroll, A.L. Patterns of Infestation by Subcortical Insects (Coleoptera: Buprestidae, Cerambycidae) after Widespread Wildfires in Mature Douglas-Fir (Pseudotsuga menziesii) Forests. Ecol Manag. 2022, 513, 120203. [Google Scholar] [CrossRef]
- Shore, T.L.; Safranyik, L.; Riel, W.G.; Ferguson, M.; Castonguay, J. Evaluation of factors affecting tree and stand susceptibility to the Douglas-fir beetle (Coleoptera: Scolytidae). Can. Entomol. 1999, 131, 831–839. [Google Scholar] [CrossRef]
- Sturdevant, N.; Haavik, L.; Negrón, J.F. Douglas-Fir Tree Mortality Caused by the Douglas-Fir Beetle in Thinned and Unthinned Stands in Montana, USA. For. Sci. 2022, 68, 145–151. [Google Scholar] [CrossRef]
- Negrón, J.F.; Lynch, A.M.; Schaupp, W.C.; Mercado, J.E. Douglas-Fir Tussock Moth- and Douglas-Fir Beetle-Caused Mortality in a Ponderosa Pine/Douglas-Fir Forest in the Colorado Front Range, USA. Forests 2014, 5, 3131–3146. [Google Scholar] [CrossRef]
- Ganio, L.M.; Progar, R.A. Mortality Predictions of Fire-Injured Large Douglas-Fir and Ponderosa Pine in Oregon and Washington, USA. Ecol Manag. 2017, 390, 47–67. [Google Scholar] [CrossRef]
- Hood, S.M.; McHugh, C.W.; Ryan, K.C.; Reinhardt, E.; Smith, S.L. Evaluation of a Post-Fire Tree Mortality Model for Western USA Conifers. Int. J. Wildland Fire 2007, 16, 679–689. [Google Scholar] [CrossRef]
- Ross, D.W.; Daterman, G.E. Integrating Pheromone and Silvicultural Methods for Managing the Douglas-Fir Beetle. In Proceedings of the Integrating cultural tactics into the management of bark beetle and reforestation pests. In USFS General Technical Report NE-236; USDA Forest Service: Washington, DC, USA, 2018; pp. 135–145. [Google Scholar]
- Ross, D.W. Douglas-Fir Beetle Response to Artificial Creation of Down Wood in the Oregon Coast Range. West. J. Appl. For. 2006, 21, 117–122. [Google Scholar] [CrossRef]
- Ross, D.W.; Daterman, G.E. Using Pheromone-Baited Traps To Control the Amount and Distribution of Tree Mortality During Outbreaks of the Douglas-Fir Beetle. For. Sci. 1997, 43, 65–70. [Google Scholar]
- Bernal, A.A.; Kane, J.M.; Knapp, E.E.; Zald, H.S.J. Tree Resistance to Drought and Bark Beetle-Associated Mortality Following Thinning and Prescribed Fire Treatments. Ecol Manag. 2023, 530, 120758. [Google Scholar] [CrossRef]
- BAER 416 Fire Executive Summary. In USDA Forest Service Report; San Juan National Forest: Durango, CO, USA, 2018.
- Korb, J.E.; Fulé, P.Z.; Wu, R. Variability of warm/dry mixed conifer forests in southwestern Colorado, USA: Implications for ecological restoration. For. Ecol. Manag. 2013, 304, 182–191. [Google Scholar] [CrossRef]
- Coleman, T.; Graves, A.; Heath, Z.; Flowers, R. Accuracy of aerial detection surveys for mapping insect and disease disturbances in the United States. Ecol Manag. 2018, 430, 321–336. [Google Scholar] [CrossRef]
- Portet, S. A primer on model selection using the Akaike Information Criterion. Infect. Dis. Model. 2020, 5, 111–128. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 2017, 151, 147–160. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 20 September 2023).
- Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased Recursive Partitioning: A Conditional Inference Framework. J. Comput. Graph. Stat. 2006, 15, 651–674. [Google Scholar] [CrossRef]
- Kuhn, M.; Wickham, H. Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles. 2020. Available online: https://www.tidymodels.org (accessed on 21 September 2023).
- Mehl, M. Old-Growth Descriptions for the Major Forest Cover Types in the Rocky Mountain Regions. In Proceedings of the Old-Growth Forests in the Southwest and Rocky Mountain Regions, Portal, AZ, USA, 9 March 1992; USFS: Portal, AZ, USA; pp. 106–120. [Google Scholar]
- Furniss, M. Infestation Patterns of Douglas-Fir Beetle in Standing and Windthrown Trees in Southern Idaho. J. Econ. Entomol. 1992, 55, 486–491. [Google Scholar] [CrossRef]
- Ryan, K.C.; Peterson, D.L.; Reinhardt, E.D. Modeling Long-Term Fire-Caused Mortality of Douglas-Fir. For. Sci. 1988, 34, 190–199. [Google Scholar]
- Rasmussen, L.; Amman, G.D.; Vandygriff, J.C.; Oakes, R.D.; Munson, S.S.; Gibson, K. Bark Beetle and Wood Borer Infestation in the Greater Yellowstone Area During Four Postfire Years; USDA Forest Service, Intermountain Forest and Range Experiment Station: Washington, DC, USA, 1996. [Google Scholar]
- Bedard, W.D. The Douglas-Fir Beetle; Circular No. 817; USDA: Washington, DC, USA, 1950. [Google Scholar]
- Harrington, T.; Peter, D.; Marshall, D.; DeBell, D. Ten-year Douglas-fir regeneration and stand productivity differ among contrasting silvicultural regimes in western Washington, USA. For. Ecol. Manag. 2022, 510, 120102. [Google Scholar] [CrossRef]
- Weatherby, J.; Progar, R.A.; Mocettini, P. Evaluation of Tree Survival on the Payette National Forest 1995–1999; Intermountain Region Report; USDA Forest Service: Washington, DC, USA, 2001. [Google Scholar]
- Gibson, K.; Negron, J. Fire and Bark Beetle Interactions. In The Western Bark Beetle Research Group: A Unique Collaboration with Forest Health Protection-Proceedings of a Symposium at the 2007 Society of American Foresters Conference, Portland, OR, USA, 23–28 October 2009; USDA Forest Service: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- Maguire, D.A.; Hann, D.W. Bark Thickness and Bark Volume in Southwestern Oregon Douglas-Fir. West. J. Appl. For. 1990, 5, 5–8. [Google Scholar] [CrossRef]
- Jones, K.L.; Shegelski, V.A.; Marculis, N.G.; Wijerathna, A.N.; Evenden, M.L. Factors Influencing Dispersal by Flight in Bark Beetles (Coleoptera: Curculionidae: Scolytinae): From Genes to Landscapes. Can. J. For. Res. 2019, 49, 1024–1041. [Google Scholar] [CrossRef]
- Scott, D.W.; Schmitt, C.L.; Spiegel, L.H. Factors Affecting Survival of Fire Injured Trees: A Rating System For Determining Relative Probability of Survival of Conifers in the Blue and Wallowa Mountains; USDA Forest Service, Blue Mountains Pest Management Service Center: Washington, DC, USA, 2002. [Google Scholar]
- Fowler, J.F.; Sieg, C.H.; Wadleigh, L.L. Effectiveness of Litter Removal to Prevent Cambial Kill-Caused Mortality in Northern Arizona Ponderosa Pine. For. Sci. 2010, 56, 166–172. [Google Scholar]
- Hood, S.M. Mitigating Old Tree Mortality in Long-Unburned, Fire-Dependent Forests: A Synthesis; Gen. Technical Report; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010. [Google Scholar]
- Bruegger, R.A.; Varelas, L.A.; Howery, L.D.; Torell, L.A.; Stephenson, M.B.; Bailey, D.W. Targeted Grazing in Southern Arizona: Using Cattle to Reduce Fine Fuel Loads. Rangel. Ecol. Manag 2016, 69, 43–51. [Google Scholar] [CrossRef]
- Marcolin, E.; Marzano, R.; Vitali, A.; Garbarino, M.; Lingua, E. Post-Fire Management Impact on Natural Forest Regeneration through Altered Microsite Conditions. Forests 2019, 10, 1014. [Google Scholar] [CrossRef]
- Ross, D.W.; Gibson, K.; Daterman, G.E. Using MCH to Protect Trees and Stands from Douglas-Fir Beetle Infestation; USDA Forest Service, Forest Health Technology Enterprise Team: Washington, DC, USA, 2015. [Google Scholar]
BCSI | Rating | Description |
---|---|---|
0 | None | No burn |
1 | Superficial | Light charring on bark surface |
2 | Moderate | Surface of bark mostly charred; deeper furrows uncharred; bark character still discernable |
3 | Severe | Bark deeply charred on surface and deep furrows; character of bark no longer discernable |
Model Subset | Stand Variables Included | Tree Variables Included | AIC | dAIC | RSME | R2 |
---|---|---|---|---|---|---|
1 | Douglas-fir BA, percent Douglas-fir | DBH, tree height, bark char severity, bark char height | 157.8 | 0 | 0.473 | 0.54 |
2 | DBH, tree height, bark char height | 163.4 | 5.6 | 0.645 | 0.36 | |
3 | DBH, bark char severity | 163.4 | 5.6 | 0.66 | 0.35 | |
4 | DBH, bark char height | 164.3 | 6.5 | 0.668 | 0.33 | |
5 | DBH, tree height, bark char severity | 165.7 | 7.9 | 0.679 | 0.34 | |
6 | DBH, tree eight | 168.9 | 11.1 | 0.691 | 0.31 | |
7 | DBH | 178.1 | 20.3 | 0.796 | 0.21 | |
8 | Douglas-fir density, Douglas-fir BA, percent Douglas-fir | DBH, tree height, bark char severity, bark char height | 162.3 | 4.5 | 0.617 | 0.38 |
9 | DBH, tree height, bark char height | 164.5 | 6.7 | 0.674 | 0.32 | |
10 | DBH, tree height, bark char severity, | 165.5 | 7.7 | 0.679 | 0.31 | |
11 | DBH, tree height | 167.6 | 9.8 | 0.711 | 0.3 | |
12 | DBH | 168.3 | 10.5 | 0.714 | 0.29 | |
13 | DBH, bark char severity | 172.2 | 14.4 | 0.732 | 0.26 | |
14 | DBH, bark char height | 176.6 | 18.8 | 0.787 | 0.22 | |
15 | Total density, percent Douglas-fir | DBH, tree height, bark char severity, bark char height | 177.6 | 19.8 | 0.799 | 0.21 |
16 | DBH, tree height, bark char height | 177.6 | 19.8 | 0.788 | 0.2 | |
17 | DBH, tree height, bark char severity, | 178.3 | 20.5 | 0.799 | 0.2 | |
18 | DBH, tree height | 178.4 | 20.6 | 0.803 | 0.2 | |
19 | DBH | 178.6 | 20.8 | 0.82 | 0.19 | |
20 | DBH, bark char severity | 181.4 | 23.6 | 0.845 | 0.17 | |
21 | DBH, bark char height | 182.1 | 24.3 | 0.855 | 0.15 | |
22 | None | DBH, tree height, bark char severity, bark char height | 171.3 | 13.5 | 0.751 | 0.25 |
23 | DBH, tree height, bark char height | 174.6 | 16.8 | 0.79 | 0.21 | |
24 | DBH, Tree height, bark char severity, | 175.2 | 17.4 | 0.814 | 0.19 | |
25 | DBH, tree height | 178.2 | 20.4 | 0.965 | 0.16 | |
26 | DBH | 178.6 | 20.8 | 0.955 | 0.15 | |
27 | DBH, bark char severity | 189.3 | 31.5 | 0.881 | 0.12 | |
28 | DBH, bark char height | 190.2 | 32.4 | 0.901 | 0.08 | |
29 | None | None (intercept only) | 222.6 | 62.2 | 0.999 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, M.; Remke, M.; Korb, J. The Interacting Influence of Fire and Tree Characteristics on Douglas-Fir Beetle Host-Tree Selection Five Years Post-Fire. Fire 2024, 7, 64. https://doi.org/10.3390/fire7030064
Young M, Remke M, Korb J. The Interacting Influence of Fire and Tree Characteristics on Douglas-Fir Beetle Host-Tree Selection Five Years Post-Fire. Fire. 2024; 7(3):64. https://doi.org/10.3390/fire7030064
Chicago/Turabian StyleYoung, Matt, Michael Remke, and Julie Korb. 2024. "The Interacting Influence of Fire and Tree Characteristics on Douglas-Fir Beetle Host-Tree Selection Five Years Post-Fire" Fire 7, no. 3: 64. https://doi.org/10.3390/fire7030064
APA StyleYoung, M., Remke, M., & Korb, J. (2024). The Interacting Influence of Fire and Tree Characteristics on Douglas-Fir Beetle Host-Tree Selection Five Years Post-Fire. Fire, 7(3), 64. https://doi.org/10.3390/fire7030064