A Case Study of Soil Moisture and Infiltration after an Urban Fire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Observations and Meterological Data
2.3. Statistical Analysis
3. Results
3.1. Burned and Unburned Soil Moisture
3.2. A Tool to Predict Soil Moisture
3.3. Burned and Unburned Infiltration
4. Discussion
4.1. Soil Moisture
4.2. Multi-Variable Empirical Model
4.3. Infiltration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diffenbaugh, N.; Swain, D.L.; Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, R.; Yang, Z.; Yost, A.; Belongie, C.; Cohen, W. The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals. For. Ecol. Manag. 2017, 390, 173–186. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Pfaff, A.H.; Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 13750–13755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.; Safford, H.; Crimmins, M.; Thode, A. Quantitative Evidence for Increasing Forest Fire Severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems 2009, 12, 16–32. [Google Scholar] [CrossRef]
- California Department of Forestry & Fire Protection. Top 20 Largest California Wildfires. Available online: https://www.fire.ca.gov/media/5510/top20_acres.pdf (accessed on 15 December 2019).
- California Department of Forestry & Fire Protection. Top 20 most Destructive California Wildfires. Available online: https://www.fire.ca.gov/media/5511/top20_destruction.pdf (accessed on 15 December 2019).
- Lasanta, T.; Cerdà, A. Long-term erosional responses after fire in the Central Spanish Pyrenees. Catena 2005, 60, 81–100. [Google Scholar] [CrossRef]
- Karl, T.R.; Meehl, G.A.; Miller, C.D.; Hassol, S.J.; Waple, A.M.; Murray, W.L. Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and US Pacific Islands. Synth. Assess. Prod. 2008, 3, 16–19. [Google Scholar]
- Westerling, A.; Bryant, B.; Preisler, H.; Holmes, T.; Hidalgo, H.; Das, T.; Shrestha, S. Climate change and growth scenarios for California wildfire. Clim. Chang. 2011, 109, 445–463. [Google Scholar] [CrossRef]
- California Department of Forestry & Fire Protection. California’s Fforests and Rangelands: 2017 Assessment. Available online: https://frap.fire.ca.gov/media/3180/assessment2017.pdf (accessed on 4 May 2020).
- Stein, E.D.; Brown, J.S.; Hogue, T.S.; Burke, M.P.; Kinoshita, A. Stormwater contaminant loading following southern California wildfires. Environ. Toxicol. Chem. 2012, 31, 2625–2638. [Google Scholar] [CrossRef]
- Minnich, R.A. Chaparral Fire History in San Diego County and Adjacent Baja California: An Evaluation of Natural Fire Regimes and the Effects of Suppression Management. California Chaparral: Paradigms Reexamined. Natural History Museum of Los Angeles County, Science Series 1989. Available online: https://www.fs.fed.us/psw/publications/4403/Management.pdf (accessed on 27 January 2020).
- Brooks, M.L. Alien Annual Grasses and Fire in the Mojave Desert. Madroño 1999, 46, 13–19. [Google Scholar]
- White, M.D.; Greer, K.A. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Peñasquitos Creek, California. Landsc. Urban Plan. 2006, 74, 125–138. [Google Scholar] [CrossRef]
- Letey, J. Causes and consequences of fire-induced soil water repellency. Hydrol. Process. 2001, 15, 2867–2875. [Google Scholar] [CrossRef]
- Leon, F. The effect of fire on soil properties. In Proceedings-Management and Productivity of Western-Montane Forest Soils, Boise, Ada, USA, 10–12 April 1990; Harvey, A.E., Neuenschwander, L.F., Eds.; Intermountain Forest Experiment Station: Ogden, UT, USA, 1991. [Google Scholar]
- Moody, J.A.; Martin, D.A. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf. Process. Landf. 2001, 26, 1049–1070. [Google Scholar] [CrossRef]
- Rulli, M.C.; Rosso, R. Hydrologic response of upland catchments to wildfires. Adv. Water Resour. 2007, 30, 2072–2086. [Google Scholar] [CrossRef]
- Burke, M.; Hogue, T.; Ferreira, M.; Mendez, C.; Navarro, B.; Lopez, S.; Jay, J. The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds. Water Air Soil Pollut. 2010, 212, 369–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.-L.; Zhang, G.-L. Water infiltration in urban soils and its effects on the quantity and quality of runoff. J. Soils Sediments 2011, 11, 751–761. [Google Scholar] [CrossRef]
- Merz, B.; Plate, E.J.; Bloesch, G.; Sivapalan, M.; Gupta, V.; Beven, K. An analysis of the effects of spatial variability of soil and soil moisture on runoff. Water Resour. Res. 1997, 33, 2909–2922. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Singh, V. Assimilation of Observed Soil Moisture Data in Storm Rainfall-Runoff Modeling. J. Hydrol. Eng. 2009, 14, 153–165. [Google Scholar] [CrossRef]
- Moore, R.J.; Cole, S.J.; Bell, V.A.; Jones, D.A. Issues in flood forecasting: Ungauged basins, extreme floods and uncertainty. IAHS Publ. Ser. Proc. Rep. 2006, 305, 103–122. [Google Scholar]
- Papathanasiou, C.; Makropoulos, C.; Mimikou, M. Hydrological modelling for flood forecasting: Calibrating the post-fire initial conditions. J. Hydrol. 2015, 529, 1838–1850. [Google Scholar] [CrossRef]
- Gao, H.; Birkel, C.; Hrachowitz, M.; Tetzlaff, D.; Soulsby, C.; Savenije, H.H.G. A simple topography-driven and calibration-free runoff generation module. Hydrol. Earth Syst. Sci. 2018, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Tayfur, G.; Zucco, G.; Brocca, L.; Moramarco, T. Coupling soil moisture and precipitation observations for predicting hourly runoff at small catchment scale. J. Hydrol. 2014, 510, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Kinner, D.A.; Moody, J.A. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes. J. Hydrol. 2010, 381, 322–332. [Google Scholar] [CrossRef]
- Kinoshita, A.M.; Hogue, T.S. Spatial and temporal controls on post-fire hydrologic recovery in Southern California watersheds. Catena 2011, 87, 240–252. [Google Scholar] [CrossRef]
- Hatch, C.E.; Fisher, A.T.; Ruehl, C.R.; Stemler, G. Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. J. Hydrol. 2010, 389, 276–288. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Wang, Q.; Zhang, F.; Zhang, J. Temporal changes in soil hydraulic conductivity with different soil types and irrigation methods. Geoderma 2013, 193, 290–299. [Google Scholar] [CrossRef]
- Korres, W.; Reichenau, T.G.; Fiener, P.; Koyama, C.N.; Bogena, H.R.; Cornelissen, T.; Baatz, R.; Herbst, M.; Diekkrüger, B.; Vereecken, H.; et al. Spatio-temporal soil moisture patterns—A meta-analysis using plot to catchment scale data. J. Hydrol. 2015, 520, 326–341. [Google Scholar] [CrossRef] [Green Version]
- Rienzner, M.; Gandolfi, C. Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale. Soil Tillage Res. 2014, 135, 28–40. [Google Scholar] [CrossRef]
- Brocca, L.; Liersch, S.; Melone, F.; Moramarco, T.; Volk, M. Application of a model-based rainfall-runoff database as efficient tool for flood risk management. Hydrol. Earth Syst. Sci. 2013, 17, 3159–3169. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Bouaicha, R.; Brocca, L.; Dorigo, W.; Bouvier, C.; Camici, S.; Servat, E. Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrol. Earth Syst. Sci. 2012, 16, 4375–4386. [Google Scholar] [CrossRef] [Green Version]
- Dabrowska-Zielinska, K.; Budzynska, M.; Kowalik, W.; Turlej, K. Soil moisture and evapotranspiration of wetlands vegetation habitats retrieved from satellite images. Hydrol. Earth Syst. Sci. 2010, 7, 5929–5955. [Google Scholar] [CrossRef]
- Moody, J.A.; Ebel, B.A.; Nyman, P.; Martin, D.A.; Stoof, C.; McKinley, R. Relations between soil hydraulic properties and burn severity. Int. J. Wildland Fire 2016, 25, 279–293. [Google Scholar] [CrossRef]
- Wieting, C.; Ebel, B.A.; Singha, K. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. J. Hydrol. Reg. Stud. 2017, 13, 43–57. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Campbell, G.S.; Jungbauer Jr, J.D.; Bristow, K.L.; Hungerford, R.D. Soil temperature and water content beneath a surface fire. Soil Sci. 1995, 159, 363–374. [Google Scholar] [CrossRef]
- Badía, D.; Martí, C. Plant ash and heat intensity effects on chemicaland physical properties of two contrasting soils. Arid Land Res. Manag. 2003, 17, 23–41. [Google Scholar] [CrossRef]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: A review. Int. J. Wildland Fire 2012, 21, 857–872. [Google Scholar] [CrossRef]
- Cawson, J.G.; Nyman, P.; Smith, H.G.; Lane, P.N.J.; Sheridan, G.J. How soil temperatures during prescribed burning affect soil water repellency, infiltration and erosion. Geoderma 2016, 278, 12–22. [Google Scholar] [CrossRef]
- Badía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 2017, 601, 1119–1128. [Google Scholar] [CrossRef]
- DeBano, L.F.; Krammes, J.S. Water Repellent Soils and Their Relation to Wildfire Temperatures. Hydrol. Sci. J. 1966, 11, 14–19. [Google Scholar] [CrossRef]
- Hewlett, J.D.; Lull, H.W.; Reinhart, K.G. In defense of experimental watersheds. Water Resour. Res. 1969, 5, 306–316. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Carey, S.K.; Mcnamara, J.P.; Laudon, H.; Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 2017, 53, 2598–2604. [Google Scholar] [CrossRef] [Green Version]
- Latron, J.; Lana-Renault, N. The relevance of hydrological research in small catchments—A perspective from long-term monitoring sites in Europe. Cuad. Investig. Geogr. 2018, 44, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Isla, N.M.; Lee, J.L. Climate of San Diego, California. 2006. Available online: https://repository.library.noaa.gov/view/noaa/14098 (accessed on 21 December 2019).
- Mathews, L. Vegetation and Fluvial Geomorphology Dynamics after Fire in Urban Mediterranean Riparian Areas. Master’s Thesis, San Diego State University, San Diego, CA, USA, 2020. [Google Scholar]
- Natural Resources Conservation Service. Web Soil Survey. Available online: https://websoilsurvey.sc.egov.usda.gov/ (accessed on 11 January 2020).
- SanGIS. Sewer_Main_SD. Available online: http://www.sangis.org/download/index.html (accessed on 13 January 2020).
- Campbell Scientific. Hydrosense II User Guide. Available online: http://s.campbellsci.com/documents/au/manuals/au_hydrosense_ii_user_guide_10-11.pdf (accessed on 15 January 2020).
- Meter Group Inc., USA. Mini Disk Infiltrometer. Available online: https://www.metergroup.com/environment/products/mini-disk-infiltrometer/ (accessed on 15 January 2020).
- Radinja, M.; Vidmar, I.; Atanasova, N.; Mikoš, M.; Šraj, M. Determination of Spatial and Temporal Variability of Soil Hydraulic Conductivity for Urban Runoff Modelling. Water 2019, 11, 941. [Google Scholar] [CrossRef] [Green Version]
- Horel, J.; Splitt, M.; Dunn, L.; Pechmann, J.; White, B.; Ciliberti, C.; Lazarus, S.; Slemmer, J.; Zaff, D.; Burks, J. Mesowest: Cooperative mesonets in the western united states. Bull. Am. Meteorol. Soc. 2002, 83, 211–226. [Google Scholar] [CrossRef]
- Scott, R.L.; Shuttleworth, W.J.; Keefer, T.O.; Warrick, A.W. Modeling multiyear observations of soil moisture recharge in the semiarid American Southwest. Water Resour. Res. 2000, 36, 2233–2247. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; He, Z.-B.; Du, J.; Chen, L.-F.; Lin, P.-F.; Li, J. Temporal variability in soil moisture after thinning in semi-arid Picea crassifolia plantations in northwestern China. For. Ecol. Manag. 2017, 401, 273–285. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Mittelbach, H.; Seneviratne, S. A new perspective on the spatio-temporal variability of soil moisture: Temporal dynamics versus time-invariant contributions. Hydrol. Earth Syst. Sci. 2012, 16, 2169–2179. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Zucco, G.; Mittelbach, H.; Moramarco, T.; Seneviratne, S.I. Absolute versus temporal anomaly and percent of saturation soil moisture spatial variability for six networks worldwide. Water Resour. Res. 2014, 50, 5560–5576. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Estimating spatially distributed soil water content at small watershed scales based on decomposition of temporal anomaly and time stability analysis. Hydrol. Earth Syst. Sci. 2016, 20, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Ng, E.; Miller, P.C. Soil Moisture Relations in the Southern California Chaparral. Ecology 1980, 61, 98–107. [Google Scholar] [CrossRef]
- Margulis, S. Introduction to Hydrology. 2014. Available online: https://margulis-group.github.io/teaching/ (accessed on 29 March 2020).
- Gomez-Plaza, A.; Martinez-Mena, M.; Albaladejo, J.; Castillo, V.M. Factors regulating spatial distribution of soil water content in small semiarid catchments. J. Hydrol. 2001, 253, 211–226. [Google Scholar] [CrossRef]
- Debano, L. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- Rutsch, M.; Rieckermann, J.; Cullmann, J.; Ellis, J.B.; Vollertsen, J.; Krebs, P. Towards a better understanding of sewer exfiltration. Water Res. 2008, 42, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Rueedi, J.; Cronin, A.A.; Morris, B.L. Estimation of sewer leakage to urban groundwater using depth-specific hydrochemistry. Water Environ. J. 2009, 23, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Divers, M.T.; Elliott, E.M.; Bain, D.J. Constraining nitrogen inputs to urban streams from leaking sewers using inverse modeling: Implications for dissolved inorganic nitrogen (DIN) retention in urban environments. Environ. Sci. Technol. 2013, 47, 1816–1823. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Brunsell, N. A scaling analysis of soil moisture–precipitation interactions in a regional climate model. Theor. Appl. Clim. 2009, 98, 221–235. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, W.; Zhang, X.; Zhangzhong, L.; Xue, X. Research on soil moisture prediction model based on deep learning. PLoS ONE 2019, 14, e0214508. [Google Scholar] [CrossRef]
- Crow, W.T.; Chen, F.; Reichle, R.H.; Xia, Y.; Liu, Q. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models. Geophys. Res. Lett. 2018, 45, 4869–4878. [Google Scholar] [CrossRef] [PubMed]
- Witthoeft Alan, F.; Conkle Christopher, S.; Stern, A. Techniques for In Situ Evaluation of Stormwater Infiltration Rate. In Geo-Congress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 3432–3443. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, H.; Ren, Z.; Zhang, D.; Zhai, C.; Mao, Z.; Tang, Z.; He, X. Effects of Urbanization, Soil Property and Vegetation Configuration on Soil Infiltration of Urban Forest in Changchun, Northeast China. Chin. Geogr. Sci. 2018, 28, 482–494. [Google Scholar] [CrossRef] [Green Version]
- Robichaud, P.R. New Procedure for Sampling Infiltration to Assess Post-Fire Soil Water Repellency; Research note RMRS; RN-33; US Dept of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008.
- Ebel, B.A.; Moody, J.A. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils. Hydrol. Process. 2017, 31, 324–340. [Google Scholar] [CrossRef]
- Moody, J.A.; Martin, R.G.; Ebel, B.A. Sources of inherent infiltration variability in postwildfire soils. Hydrol. Process. 2019, 33, 3010–3029. [Google Scholar] [CrossRef]
- Bouma, J.; Belmans, C.F.M.; Dekker, L.W. Water Infiltration and Redistribution in a Silt Loam Subsoil with Vertical Worm Channels. Soil Sci. Soc. Am. J. 1982, 46, 917–921. [Google Scholar] [CrossRef]
- Bradford, J.M.; Ferris, J.E.; Remley, P.A. Interrill Soil Erosion Processes: I. Effect of Surface Sealing on Infiltration, Runoff, and Soil Splash Detachment. Soil Sci. Soc. Am. J. 1987, 51, 1566–1571. [Google Scholar] [CrossRef]
- Dunne, T.; Zhang, W.; Aubry, B.F. Effects of Rainfall, Vegetation, and Microtopography on Infiltration and Runoff. Water Resour. Res. 1991, 27, 2271–2285. [Google Scholar] [CrossRef]
- Cerdà, A. Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. J. Hydrol. 1997, 198, 209–225. [Google Scholar] [CrossRef]
- Robichaud, P.R. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. J. Hydrol. 2000, 231, 220–229. [Google Scholar] [CrossRef]
Transect | Location Name | Description |
---|---|---|
PB | L6.1 | Bottom of the left bank upland section under a tree near the streambed, located at 6.1 m |
L18.3 | Riparian zone near the stream bed on top of heavily compacted soil and cobble, located at 18.3 m | |
CUL | L3.1 | Declining upland zone, located at 3.1 m |
L12.8 | Flat riparian zone surrounded by vegetation near the stream, located at 12.8 m | |
L24.4 | Top of the upland downstream-facing right bank on a stable horizontal slope, located at 24.4 m | |
DC_B | L0 | Burned upland left bank slope, located at 0 m |
L16 | Burned left bank riparian zone surrounded by burned Washingtoniaspp., located at 16 m | |
L29 | Burned riparian zone in between the right bank of Alvarado Creek and an Arundo donax berm, located at 29 m | |
DC_UB | L63 | Stable horizontal slope with riverwash, located at 63 m |
Location | Range (cm/h) | Mean (cm/h) | Median (cm/h) |
---|---|---|---|
PB L6.1 | 4–64 | 22 ± 17 | 15 |
PB L18.3 | 5–41 | 22 ± 10 | 20 |
CUL L3.1 | 3–39 | 21 ± 10 | 20 |
CUL L12.8 | 8–44 | 26 ± 14 | 19 |
CUL L24.4 | 5–58 | 26 ± 17 | 21 |
DC_B L0 | 4–42 | 19 ± 12 | 15 |
DC_B L16 | 12–46 | 34 ± 9 | 34 |
DC_B L29 | 7–73 | 45 ± 22 | 49 |
DC_UB L63 | 9–46 | 22 ± 9 | 18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkin, Q.; Kinoshita, A.M. A Case Study of Soil Moisture and Infiltration after an Urban Fire. Fire 2020, 3, 22. https://doi.org/10.3390/fire3020022
Alkin Q, Kinoshita AM. A Case Study of Soil Moisture and Infiltration after an Urban Fire. Fire. 2020; 3(2):22. https://doi.org/10.3390/fire3020022
Chicago/Turabian StyleAlkin, Quinn, and Alicia M. Kinoshita. 2020. "A Case Study of Soil Moisture and Infiltration after an Urban Fire" Fire 3, no. 2: 22. https://doi.org/10.3390/fire3020022
APA StyleAlkin, Q., & Kinoshita, A. M. (2020). A Case Study of Soil Moisture and Infiltration after an Urban Fire. Fire, 3(2), 22. https://doi.org/10.3390/fire3020022