A Case Study of Soil Moisture and Infiltration after an Urban Fire
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Observations and Meterological Data
2.3. Statistical Analysis
3. Results
3.1. Burned and Unburned Soil Moisture
3.2. A Tool to Predict Soil Moisture
3.3. Burned and Unburned Infiltration
4. Discussion
4.1. Soil Moisture
4.2. Multi-Variable Empirical Model
4.3. Infiltration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diffenbaugh, N.; Swain, D.L.; Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Yang, Z.; Yost, A.; Belongie, C.; Cohen, W. The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals. For. Ecol. Manag. 2017, 390, 173–186. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Pfaff, A.H.; Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 13750–13755. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef]
- Miller, J.; Safford, H.; Crimmins, M.; Thode, A. Quantitative Evidence for Increasing Forest Fire Severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems 2009, 12, 16–32. [Google Scholar] [CrossRef]
- California Department of Forestry & Fire Protection. Top 20 Largest California Wildfires. Available online: https://www.fire.ca.gov/media/5510/top20_acres.pdf (accessed on 15 December 2019).
- California Department of Forestry & Fire Protection. Top 20 most Destructive California Wildfires. Available online: https://www.fire.ca.gov/media/5511/top20_destruction.pdf (accessed on 15 December 2019).
- Lasanta, T.; Cerdà, A. Long-term erosional responses after fire in the Central Spanish Pyrenees. Catena 2005, 60, 81–100. [Google Scholar] [CrossRef]
- Karl, T.R.; Meehl, G.A.; Miller, C.D.; Hassol, S.J.; Waple, A.M.; Murray, W.L. Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and US Pacific Islands. Synth. Assess. Prod. 2008, 3, 16–19. [Google Scholar]
- Westerling, A.; Bryant, B.; Preisler, H.; Holmes, T.; Hidalgo, H.; Das, T.; Shrestha, S. Climate change and growth scenarios for California wildfire. Clim. Chang. 2011, 109, 445–463. [Google Scholar] [CrossRef]
- California Department of Forestry & Fire Protection. California’s Fforests and Rangelands: 2017 Assessment. Available online: https://frap.fire.ca.gov/media/3180/assessment2017.pdf (accessed on 4 May 2020).
- Stein, E.D.; Brown, J.S.; Hogue, T.S.; Burke, M.P.; Kinoshita, A. Stormwater contaminant loading following southern California wildfires. Environ. Toxicol. Chem. 2012, 31, 2625–2638. [Google Scholar] [CrossRef]
- Minnich, R.A. Chaparral Fire History in San Diego County and Adjacent Baja California: An Evaluation of Natural Fire Regimes and the Effects of Suppression Management. California Chaparral: Paradigms Reexamined. Natural History Museum of Los Angeles County, Science Series 1989. Available online: https://www.fs.fed.us/psw/publications/4403/Management.pdf (accessed on 27 January 2020).
- Brooks, M.L. Alien Annual Grasses and Fire in the Mojave Desert. Madroño 1999, 46, 13–19. [Google Scholar]
- White, M.D.; Greer, K.A. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Peñasquitos Creek, California. Landsc. Urban Plan. 2006, 74, 125–138. [Google Scholar] [CrossRef]
- Letey, J. Causes and consequences of fire-induced soil water repellency. Hydrol. Process. 2001, 15, 2867–2875. [Google Scholar] [CrossRef]
- Leon, F. The effect of fire on soil properties. In Proceedings-Management and Productivity of Western-Montane Forest Soils, Boise, Ada, USA, 10–12 April 1990; Harvey, A.E., Neuenschwander, L.F., Eds.; Intermountain Forest Experiment Station: Ogden, UT, USA, 1991. [Google Scholar]
- Moody, J.A.; Martin, D.A. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf. Process. Landf. 2001, 26, 1049–1070. [Google Scholar] [CrossRef]
- Rulli, M.C.; Rosso, R. Hydrologic response of upland catchments to wildfires. Adv. Water Resour. 2007, 30, 2072–2086. [Google Scholar] [CrossRef]
- Burke, M.; Hogue, T.; Ferreira, M.; Mendez, C.; Navarro, B.; Lopez, S.; Jay, J. The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds. Water Air Soil Pollut. 2010, 212, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-L.; Zhang, G.-L. Water infiltration in urban soils and its effects on the quantity and quality of runoff. J. Soils Sediments 2011, 11, 751–761. [Google Scholar] [CrossRef]
- Merz, B.; Plate, E.J.; Bloesch, G.; Sivapalan, M.; Gupta, V.; Beven, K. An analysis of the effects of spatial variability of soil and soil moisture on runoff. Water Resour. Res. 1997, 33, 2909–2922. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Singh, V. Assimilation of Observed Soil Moisture Data in Storm Rainfall-Runoff Modeling. J. Hydrol. Eng. 2009, 14, 153–165. [Google Scholar] [CrossRef]
- Moore, R.J.; Cole, S.J.; Bell, V.A.; Jones, D.A. Issues in flood forecasting: Ungauged basins, extreme floods and uncertainty. IAHS Publ. Ser. Proc. Rep. 2006, 305, 103–122. [Google Scholar]
- Papathanasiou, C.; Makropoulos, C.; Mimikou, M. Hydrological modelling for flood forecasting: Calibrating the post-fire initial conditions. J. Hydrol. 2015, 529, 1838–1850. [Google Scholar] [CrossRef]
- Gao, H.; Birkel, C.; Hrachowitz, M.; Tetzlaff, D.; Soulsby, C.; Savenije, H.H.G. A simple topography-driven and calibration-free runoff generation module. Hydrol. Earth Syst. Sci. 2018, 1–42. [Google Scholar] [CrossRef]
- Tayfur, G.; Zucco, G.; Brocca, L.; Moramarco, T. Coupling soil moisture and precipitation observations for predicting hourly runoff at small catchment scale. J. Hydrol. 2014, 510, 363–371. [Google Scholar] [CrossRef]
- Kinner, D.A.; Moody, J.A. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes. J. Hydrol. 2010, 381, 322–332. [Google Scholar] [CrossRef]
- Kinoshita, A.M.; Hogue, T.S. Spatial and temporal controls on post-fire hydrologic recovery in Southern California watersheds. Catena 2011, 87, 240–252. [Google Scholar] [CrossRef]
- Hatch, C.E.; Fisher, A.T.; Ruehl, C.R.; Stemler, G. Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. J. Hydrol. 2010, 389, 276–288. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, Q.; Zhang, F.; Zhang, J. Temporal changes in soil hydraulic conductivity with different soil types and irrigation methods. Geoderma 2013, 193, 290–299. [Google Scholar] [CrossRef]
- Korres, W.; Reichenau, T.G.; Fiener, P.; Koyama, C.N.; Bogena, H.R.; Cornelissen, T.; Baatz, R.; Herbst, M.; Diekkrüger, B.; Vereecken, H.; et al. Spatio-temporal soil moisture patterns—A meta-analysis using plot to catchment scale data. J. Hydrol. 2015, 520, 326–341. [Google Scholar] [CrossRef]
- Rienzner, M.; Gandolfi, C. Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale. Soil Tillage Res. 2014, 135, 28–40. [Google Scholar] [CrossRef]
- Brocca, L.; Liersch, S.; Melone, F.; Moramarco, T.; Volk, M. Application of a model-based rainfall-runoff database as efficient tool for flood risk management. Hydrol. Earth Syst. Sci. 2013, 17, 3159–3169. [Google Scholar] [CrossRef]
- Tramblay, Y.; Bouaicha, R.; Brocca, L.; Dorigo, W.; Bouvier, C.; Camici, S.; Servat, E. Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrol. Earth Syst. Sci. 2012, 16, 4375–4386. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Budzynska, M.; Kowalik, W.; Turlej, K. Soil moisture and evapotranspiration of wetlands vegetation habitats retrieved from satellite images. Hydrol. Earth Syst. Sci. 2010, 7, 5929–5955. [Google Scholar] [CrossRef]
- Moody, J.A.; Ebel, B.A.; Nyman, P.; Martin, D.A.; Stoof, C.; McKinley, R. Relations between soil hydraulic properties and burn severity. Int. J. Wildland Fire 2016, 25, 279–293. [Google Scholar] [CrossRef]
- Wieting, C.; Ebel, B.A.; Singha, K. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. J. Hydrol. Reg. Stud. 2017, 13, 43–57. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Campbell, G.S.; Jungbauer Jr, J.D.; Bristow, K.L.; Hungerford, R.D. Soil temperature and water content beneath a surface fire. Soil Sci. 1995, 159, 363–374. [Google Scholar] [CrossRef]
- Badía, D.; Martí, C. Plant ash and heat intensity effects on chemicaland physical properties of two contrasting soils. Arid Land Res. Manag. 2003, 17, 23–41. [Google Scholar] [CrossRef]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: A review. Int. J. Wildland Fire 2012, 21, 857–872. [Google Scholar] [CrossRef]
- Cawson, J.G.; Nyman, P.; Smith, H.G.; Lane, P.N.J.; Sheridan, G.J. How soil temperatures during prescribed burning affect soil water repellency, infiltration and erosion. Geoderma 2016, 278, 12–22. [Google Scholar] [CrossRef]
- Badía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 2017, 601, 1119–1128. [Google Scholar] [CrossRef]
- DeBano, L.F.; Krammes, J.S. Water Repellent Soils and Their Relation to Wildfire Temperatures. Hydrol. Sci. J. 1966, 11, 14–19. [Google Scholar] [CrossRef]
- Hewlett, J.D.; Lull, H.W.; Reinhart, K.G. In defense of experimental watersheds. Water Resour. Res. 1969, 5, 306–316. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Carey, S.K.; Mcnamara, J.P.; Laudon, H.; Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 2017, 53, 2598–2604. [Google Scholar] [CrossRef]
- Latron, J.; Lana-Renault, N. The relevance of hydrological research in small catchments—A perspective from long-term monitoring sites in Europe. Cuad. Investig. Geogr. 2018, 44, 387–395. [Google Scholar] [CrossRef]
- Isla, N.M.; Lee, J.L. Climate of San Diego, California. 2006. Available online: https://repository.library.noaa.gov/view/noaa/14098 (accessed on 21 December 2019).
- Mathews, L. Vegetation and Fluvial Geomorphology Dynamics after Fire in Urban Mediterranean Riparian Areas. Master’s Thesis, San Diego State University, San Diego, CA, USA, 2020. [Google Scholar]
- Natural Resources Conservation Service. Web Soil Survey. Available online: https://websoilsurvey.sc.egov.usda.gov/ (accessed on 11 January 2020).
- SanGIS. Sewer_Main_SD. Available online: http://www.sangis.org/download/index.html (accessed on 13 January 2020).
- Campbell Scientific. Hydrosense II User Guide. Available online: http://s.campbellsci.com/documents/au/manuals/au_hydrosense_ii_user_guide_10-11.pdf (accessed on 15 January 2020).
- Meter Group Inc., USA. Mini Disk Infiltrometer. Available online: https://www.metergroup.com/environment/products/mini-disk-infiltrometer/ (accessed on 15 January 2020).
- Radinja, M.; Vidmar, I.; Atanasova, N.; Mikoš, M.; Šraj, M. Determination of Spatial and Temporal Variability of Soil Hydraulic Conductivity for Urban Runoff Modelling. Water 2019, 11, 941. [Google Scholar] [CrossRef]
- Horel, J.; Splitt, M.; Dunn, L.; Pechmann, J.; White, B.; Ciliberti, C.; Lazarus, S.; Slemmer, J.; Zaff, D.; Burks, J. Mesowest: Cooperative mesonets in the western united states. Bull. Am. Meteorol. Soc. 2002, 83, 211–226. [Google Scholar] [CrossRef]
- Scott, R.L.; Shuttleworth, W.J.; Keefer, T.O.; Warrick, A.W. Modeling multiyear observations of soil moisture recharge in the semiarid American Southwest. Water Resour. Res. 2000, 36, 2233–2247. [Google Scholar] [CrossRef]
- Zhu, X.; He, Z.-B.; Du, J.; Chen, L.-F.; Lin, P.-F.; Li, J. Temporal variability in soil moisture after thinning in semi-arid Picea crassifolia plantations in northwestern China. For. Ecol. Manag. 2017, 401, 273–285. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Mittelbach, H.; Seneviratne, S. A new perspective on the spatio-temporal variability of soil moisture: Temporal dynamics versus time-invariant contributions. Hydrol. Earth Syst. Sci. 2012, 16, 2169–2179. [Google Scholar] [CrossRef]
- Brocca, L.; Zucco, G.; Mittelbach, H.; Moramarco, T.; Seneviratne, S.I. Absolute versus temporal anomaly and percent of saturation soil moisture spatial variability for six networks worldwide. Water Resour. Res. 2014, 50, 5560–5576. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Estimating spatially distributed soil water content at small watershed scales based on decomposition of temporal anomaly and time stability analysis. Hydrol. Earth Syst. Sci. 2016, 20, 571–587. [Google Scholar] [CrossRef]
- Ng, E.; Miller, P.C. Soil Moisture Relations in the Southern California Chaparral. Ecology 1980, 61, 98–107. [Google Scholar] [CrossRef]
- Margulis, S. Introduction to Hydrology. 2014. Available online: https://margulis-group.github.io/teaching/ (accessed on 29 March 2020).
- Gomez-Plaza, A.; Martinez-Mena, M.; Albaladejo, J.; Castillo, V.M. Factors regulating spatial distribution of soil water content in small semiarid catchments. J. Hydrol. 2001, 253, 211–226. [Google Scholar] [CrossRef]
- Debano, L. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- Rutsch, M.; Rieckermann, J.; Cullmann, J.; Ellis, J.B.; Vollertsen, J.; Krebs, P. Towards a better understanding of sewer exfiltration. Water Res. 2008, 42, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Rueedi, J.; Cronin, A.A.; Morris, B.L. Estimation of sewer leakage to urban groundwater using depth-specific hydrochemistry. Water Environ. J. 2009, 23, 134–144. [Google Scholar] [CrossRef]
- Divers, M.T.; Elliott, E.M.; Bain, D.J. Constraining nitrogen inputs to urban streams from leaking sewers using inverse modeling: Implications for dissolved inorganic nitrogen (DIN) retention in urban environments. Environ. Sci. Technol. 2013, 47, 1816–1823. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Brunsell, N. A scaling analysis of soil moisture–precipitation interactions in a regional climate model. Theor. Appl. Clim. 2009, 98, 221–235. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, W.; Zhang, X.; Zhangzhong, L.; Xue, X. Research on soil moisture prediction model based on deep learning. PLoS ONE 2019, 14, e0214508. [Google Scholar] [CrossRef]
- Crow, W.T.; Chen, F.; Reichle, R.H.; Xia, Y.; Liu, Q. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models. Geophys. Res. Lett. 2018, 45, 4869–4878. [Google Scholar] [CrossRef] [PubMed]
- Witthoeft Alan, F.; Conkle Christopher, S.; Stern, A. Techniques for In Situ Evaluation of Stormwater Infiltration Rate. In Geo-Congress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 3432–3443. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, H.; Ren, Z.; Zhang, D.; Zhai, C.; Mao, Z.; Tang, Z.; He, X. Effects of Urbanization, Soil Property and Vegetation Configuration on Soil Infiltration of Urban Forest in Changchun, Northeast China. Chin. Geogr. Sci. 2018, 28, 482–494. [Google Scholar] [CrossRef]
- Robichaud, P.R. New Procedure for Sampling Infiltration to Assess Post-Fire Soil Water Repellency; Research note RMRS; RN-33; US Dept of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008.
- Ebel, B.A.; Moody, J.A. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils. Hydrol. Process. 2017, 31, 324–340. [Google Scholar] [CrossRef]
- Moody, J.A.; Martin, R.G.; Ebel, B.A. Sources of inherent infiltration variability in postwildfire soils. Hydrol. Process. 2019, 33, 3010–3029. [Google Scholar] [CrossRef]
- Bouma, J.; Belmans, C.F.M.; Dekker, L.W. Water Infiltration and Redistribution in a Silt Loam Subsoil with Vertical Worm Channels. Soil Sci. Soc. Am. J. 1982, 46, 917–921. [Google Scholar] [CrossRef]
- Bradford, J.M.; Ferris, J.E.; Remley, P.A. Interrill Soil Erosion Processes: I. Effect of Surface Sealing on Infiltration, Runoff, and Soil Splash Detachment. Soil Sci. Soc. Am. J. 1987, 51, 1566–1571. [Google Scholar] [CrossRef]
- Dunne, T.; Zhang, W.; Aubry, B.F. Effects of Rainfall, Vegetation, and Microtopography on Infiltration and Runoff. Water Resour. Res. 1991, 27, 2271–2285. [Google Scholar] [CrossRef]
- Cerdà, A. Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. J. Hydrol. 1997, 198, 209–225. [Google Scholar] [CrossRef]
- Robichaud, P.R. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. J. Hydrol. 2000, 231, 220–229. [Google Scholar] [CrossRef]
Transect | Location Name | Description |
---|---|---|
PB | L6.1 | Bottom of the left bank upland section under a tree near the streambed, located at 6.1 m |
L18.3 | Riparian zone near the stream bed on top of heavily compacted soil and cobble, located at 18.3 m | |
CUL | L3.1 | Declining upland zone, located at 3.1 m |
L12.8 | Flat riparian zone surrounded by vegetation near the stream, located at 12.8 m | |
L24.4 | Top of the upland downstream-facing right bank on a stable horizontal slope, located at 24.4 m | |
DC_B | L0 | Burned upland left bank slope, located at 0 m |
L16 | Burned left bank riparian zone surrounded by burned Washingtoniaspp., located at 16 m | |
L29 | Burned riparian zone in between the right bank of Alvarado Creek and an Arundo donax berm, located at 29 m | |
DC_UB | L63 | Stable horizontal slope with riverwash, located at 63 m |
Location | Range (cm/h) | Mean (cm/h) | Median (cm/h) |
---|---|---|---|
PB L6.1 | 4–64 | 22 ± 17 | 15 |
PB L18.3 | 5–41 | 22 ± 10 | 20 |
CUL L3.1 | 3–39 | 21 ± 10 | 20 |
CUL L12.8 | 8–44 | 26 ± 14 | 19 |
CUL L24.4 | 5–58 | 26 ± 17 | 21 |
DC_B L0 | 4–42 | 19 ± 12 | 15 |
DC_B L16 | 12–46 | 34 ± 9 | 34 |
DC_B L29 | 7–73 | 45 ± 22 | 49 |
DC_UB L63 | 9–46 | 22 ± 9 | 18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkin, Q.; Kinoshita, A.M. A Case Study of Soil Moisture and Infiltration after an Urban Fire. Fire 2020, 3, 22. https://doi.org/10.3390/fire3020022
Alkin Q, Kinoshita AM. A Case Study of Soil Moisture and Infiltration after an Urban Fire. Fire. 2020; 3(2):22. https://doi.org/10.3390/fire3020022
Chicago/Turabian StyleAlkin, Quinn, and Alicia M. Kinoshita. 2020. "A Case Study of Soil Moisture and Infiltration after an Urban Fire" Fire 3, no. 2: 22. https://doi.org/10.3390/fire3020022
APA StyleAlkin, Q., & Kinoshita, A. M. (2020). A Case Study of Soil Moisture and Infiltration after an Urban Fire. Fire, 3(2), 22. https://doi.org/10.3390/fire3020022