Electron-Beam Deposition of Metal and Ceramic-Based Composite Coatings in the Fore-Vacuum Pressure Range
Abstract
1. Introduction
2. Sample Preparation
3. Experimental Setup
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tejero-Martin, D.; Bennett, C.; Hussain, T. A review on environmental barrier coatings: History, current state of the art and future developments. J. Eur. Ceram. Soc. 2021, 41, 1747–1768. [Google Scholar] [CrossRef]
- Lee, K.N.; Miller, R.A.; Jacobson, N.S.; Opila, E.J. Environmental durability of mullite coating/SiC and mullite-YSZ coating/SiC systems. Ceram. Eng. Sci. Proc. 1995, 16, 1037–1044. [Google Scholar] [CrossRef]
- Lee, K.N. Current status of environmental barrier coatings for Si-Based ceramics Surf. Coat. Technol. 2000, 133, 1–7. [Google Scholar] [CrossRef]
- Lee, K.N.; Fox, D.S.; Robinson, R.C.; Bansal, N.P. Environmental barrier coatings for silicon-based ceramics. In High Temp. Ceram. Matrix Compos; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 224–229. [Google Scholar] [CrossRef]
- Krause, A.R.; Garces, H.F.; Senturk, B.S.; Padture, N.P. 2ZrO2·Y2O3 thermal barrier coatings resistant to degradation by molten CMAS: Part II, interactions with sand and fly ash. J. Am. Ceram. Soc. 2014, 97, 3950–3957. [Google Scholar] [CrossRef]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V.; Yushenko, A.Y.; Zolotukhin, D.B. Electron-Beam Deposition of Aluminum Nitride and Oxide Ceramic Coatings for Microelectronic Devices. Coatings 2021, 11, 645. [Google Scholar] [CrossRef]
- Padture, N.P. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016, 15, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, K.B.; Alizadeh, J. Deposition and optical studies of silicon carbide nitride thin films. Thin Solid Films 2000, 370, 151–154. [Google Scholar] [CrossRef]
- Hou, N.Y.; Perinpanayagam, H.; Mozumder, M.S.; Zhu, J. Novel Development of Biocompatible Coatings for Bone Implants. Coatings 2015, 5, 737–757. [Google Scholar] [CrossRef]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V.; Zolotukhin, D.B. Electron-Beam Synthesis of Dielectric Coatings Using Forevacuum Plasma Electron Sources (Review). Coatings 2022, 12, 82. [Google Scholar] [CrossRef]
- Anders, A. Physics of arcing, and implications to sputter deposition. Thin Solid Films 2006, 502, 22–28. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V.; Zolotukhin, D.B. Alumina Coating Deposition by Electron-Beam Evaporation of Ceramic Using a Forevacuum Plasma-Cathode Electron Source. Ceram. Int. 2019, 45, 9782–9787. [Google Scholar] [CrossRef]
- Burdovitsin, V.A.; Medovnik, A.V.; Oks, E.M.; Skrobov, E.V.; Yushkov, Y.G. Potential of a Dielectric Target during Its Irradiation by a Pulsed Electron Beam in the Forevacuum Pressure Range. Tech. Phys. 2012, 57, 1424–1429. [Google Scholar] [CrossRef]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V. Deposition of Boron-Containing Coatings by Electron-Beam Evaporation of Boron-Containing Targets. Ceram. Int. 2020, 46, 4519–4525. [Google Scholar] [CrossRef]
- Savkin, K.P.; Bugaev, A.S.; Nikolaev, A.G.; Oks, E.M.; Kurzina, I.A.; Shandrikov, M.V.; Yushkov, G.Y.; Brown, I.G. Decrease of ceramic surface resistance by implantation using a vacuum arc metal ion source. In Proceedings of the 2012 25th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Tomsk, Russia, 2–7 September 2012; pp. 554–557. [Google Scholar] [CrossRef]
- Zolotukhin, D.B.; Oks, E.M.; Tyunkov, A.V.; Yushkov, Y.G. Deposition of Dielectric Films on Silicon Using a Fore-Vacuum Plasma Electron Source. Rev. Sci. Instrum. 2016, 87, 063302. [Google Scholar] [CrossRef] [PubMed]
- Tyunkov, A.V.; Oks, E.M.; Yushkov, Y.G.; Zolotukhin, D.B. Ion Composition of the Beam Plasma Generated by Electron-Beam Evaporation of Metals and Ceramic in the Forevacuum Range of Pressure. Catalysts 2022, 12, 574. [Google Scholar] [CrossRef]
- Tyunkov, A.V.; Yushkov, Y.G.; Zolotukhin, D.B. Generation of Metal Ions in the Beam Plasma Produced by a Forevacuum-Pressure Electron Beam Source. Phys. Plasmas 2014, 21, 123115. [Google Scholar] [CrossRef]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V.; Zolotukhin, D.B. Dielectric Coating Deposition Regimes during Electron-Beam Evaporation of Ceramics in the Fore-Vacuum Pressure Range. Coatings 2022, 12, 130. [Google Scholar] [CrossRef]
Component Percentage, Mass % | ||||
---|---|---|---|---|
Component | Target 1 | Target 2 | Target 3 | Target 4 |
Al2O3 | 99.9 | 99 | 90 | 80 |
Cu | 0.1 | 1 | 10 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyunkov, A.V.; Klimov, A.S.; Savkin, K.P.; Yushkov, Y.G.; Zolotukhin, D.B. Electron-Beam Deposition of Metal and Ceramic-Based Composite Coatings in the Fore-Vacuum Pressure Range. Ceramics 2022, 5, 789-797. https://doi.org/10.3390/ceramics5040057
Tyunkov AV, Klimov AS, Savkin KP, Yushkov YG, Zolotukhin DB. Electron-Beam Deposition of Metal and Ceramic-Based Composite Coatings in the Fore-Vacuum Pressure Range. Ceramics. 2022; 5(4):789-797. https://doi.org/10.3390/ceramics5040057
Chicago/Turabian StyleTyunkov, A. V., A. S. Klimov, K. P. Savkin, Y. G. Yushkov, and D. B. Zolotukhin. 2022. "Electron-Beam Deposition of Metal and Ceramic-Based Composite Coatings in the Fore-Vacuum Pressure Range" Ceramics 5, no. 4: 789-797. https://doi.org/10.3390/ceramics5040057
APA StyleTyunkov, A. V., Klimov, A. S., Savkin, K. P., Yushkov, Y. G., & Zolotukhin, D. B. (2022). Electron-Beam Deposition of Metal and Ceramic-Based Composite Coatings in the Fore-Vacuum Pressure Range. Ceramics, 5(4), 789-797. https://doi.org/10.3390/ceramics5040057