You are currently on the new version of our website. Access the old version .
Colloids and InterfacesColloids and Interfaces
  • Article
  • Open Access

1 October 2021

AFM Slip Length Measurements for Water at Selected Phyllosilicate Surfaces

,
,
,
and
1
Department of Materials Science & Engineering, College of Mines and Earth Sciences, University of Utah, 122 S. Central Campus Drive, Rm 304, Salt Lake City, UT 84112, USA
2
School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Interfacial Dynamics

Abstract

Most reported slip length measurements have been made at the surfaces of synthetic materials and modified synthetic materials. In contrast, few slip length measurements at the surface of unmodified natural mineral surfaces have been reported. In this regard, flow at the silica face surfaces of the phyllosilicate minerals, talc and mica, was considered. A slip boundary condition was expected at the nonpolar hydrophobic silica surface of talc leading to enhanced flow, and a no-slip boundary condition was expected at the hydrophilic silica surface of mica. Atomic force microscopy (AFM) slip length measurements were made at the talc and mica surfaces. The slip length results for the hydrophobic silica surface of talc were contrasted to the results for the hydrophilic silica surface of mica (no-slip flow). The results are discussed based on molecular dynamics simulations (MDS), as reported in the literature, and AFM images of surface nanobubbles. For nonpolar hydrophobic surfaces (such as talc), it is doubtful that the MDS interfacial water structure and the water exclusion zone (3.2 Å) account for the AFM slip flow with slip lengths as great as 95 nm. Rather, a better explanation for the AFM slip flow condition is based on reduced interfacial viscosity due to the presence of dissolved gas and the accommodation of pancake nanobubbles at the talc surface having a height dimension of magnitude similar to the slip length.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.