Explainable Machine Learning
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Holzinger, A. The next frontier: AI we can really trust. In Proceedings of the Joint European Conference On Machine Learning Furthermore, Knowledge Discovery in Databases, Bilbao, Spain, 13–17 September 2021; pp. 427–440. [Google Scholar]
- Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar]
- Stadtler, S.; Betancourt, C.; Roscher, R. Explainable Machine Learning Reveals Capabilities, Redundancy, and Limitations of a Geospatial Air Quality Benchmark Dataset. Mach. Learn. Knowl. Extr. 2022, 4, 150–171. [Google Scholar] [CrossRef]
- Sejr, J.; Schneider-Kamp, P.; Ayoub, N. Surrogate Object Detection Explainer (SODEx) with YOLOv4 and LIME. Mach. Learn. Knowl. Extr. 2021, 3, 662–671. [Google Scholar] [CrossRef]
- Reshniak, V.; Webster, C. Robust Learning with Implicit Residual Networks. Mach. Learn. Knowl. Extr. 2021, 3, 34–55. [Google Scholar] [CrossRef]
- Arendsen, P.; Marcos, D.; Tuia, D. Concept Discovery for The Interpretation of Landscape Scenicness. Mach. Learn. Knowl. Extr. 2020, 2, 397–413. [Google Scholar] [CrossRef]
- Breen, K.; James, S.; White, J.; Allen, P.; Arnold, J. A Hybrid Artificial Neural Network to Estimate Soil Moisture Using SWAT+ and SMAP Data. Mach. Learn. Knowl. Extr. 2020, 2, 283–306. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcke, J.; Roscher, R. Explainable Machine Learning. Mach. Learn. Knowl. Extr. 2023, 5, 169-170. https://doi.org/10.3390/make5010010
Garcke J, Roscher R. Explainable Machine Learning. Machine Learning and Knowledge Extraction. 2023; 5(1):169-170. https://doi.org/10.3390/make5010010
Chicago/Turabian StyleGarcke, Jochen, and Ribana Roscher. 2023. "Explainable Machine Learning" Machine Learning and Knowledge Extraction 5, no. 1: 169-170. https://doi.org/10.3390/make5010010
APA StyleGarcke, J., & Roscher, R. (2023). Explainable Machine Learning. Machine Learning and Knowledge Extraction, 5(1), 169-170. https://doi.org/10.3390/make5010010