Prescribed-Time Cooperative Guidance Law for Multi-UAV with Intermittent Communication
Abstract
1. Introduction
2. Problem Formulation
2.1. Cooperative Guidance Engagement
2.2. Communication Network Topology
2.3. Guidance Objective
2.4. Useful Lemmas
3. Design of Cooperative Guidance Command
3.1. First Stage: Prescribed-Time Stability
3.2. Second Stage: Keep Cooperation
4. Design of Two-Stage Cooperative Guidance Law Design
- network-related parameter: internal communication network , external pinning network and time-triggered communication sequence , which are influenced by mission environment, detection information and communication capability.
- prescribed-time parameter: parameter and T are pre-specified by mission or user’s requirements.
- guidance parameter: h, K, α, β and γ are strongly affected the performance of the cooperative guidance law.
5. Simulation
5.1. Case 1: Fixed-Frequency Intermittent Communication
5.2. Case 2: Prescribed-Time Convergence Performance Verification
5.3. Case 3: Variable-Frequency Intermittent Communication
5.4. Case 4: Comparative Simulation
5.5. Case 5: Pinning Scheme
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Lin, Z.; Huang, W.; Yan, B. Current Development and Future Prospects of Multi-target Assignment Problem: A Bibliometric Analysis Review. Def. Technol. 2024; in press. [Google Scholar] [CrossRef]
- Dong, K.; Ding, R.; Bai, S.; Cai, X.; Chirarattananon, P. Stabilizing Aerodynamic Dampers for Cooperative Transport of a Suspended Payload with Aerial Robots. Adv. Intell. Syst. 2023, 5, 2300112. [Google Scholar] [CrossRef]
- Gassner, M.; Cieslewski, T.; Scaramuzza, D. Dynamic Collaboration Without Communication: Vision-based Cable-suspended Load Transport with Wwo Quadrotors. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5196–5202. [Google Scholar]
- Liu, S.; Lin, Z.; Huang, W.; Yan, B. Technical Development and Future Prospects of Cooperative Terminal Guidance Based on Knowledge Graph Analysis: A Review. J. Zhejiang Univ.-Sci. A, 2024; in press. [Google Scholar]
- Jeon, I.S.; Lee, J.I.; Tahk, M.J. Impact-time-control Guidance Law for Anti-ship Missiles. IEEE Trans. Control Syst. Technol. 2006, 14, 260–266. [Google Scholar] [CrossRef]
- Jeon, I.S.; Lee, J.I.; Tahk, M.J. Homing Guidance Law for Cooperative Attack of Multiple Missiles. J. Guid. Control. Dyn. 2010, 33, 275–280. [Google Scholar] [CrossRef]
- He, S.; Wang, W.; Lin, D.; Lei, H. Consensus-based Wwo-stage Salvo Attack Guidance. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 1555–1566. [Google Scholar] [CrossRef]
- Zhao, Q.; Dong, X.; Liang, Z.; Ren, Z. Distributed Group Cooperative Guidance for Multiple Missiles with Fixed and Switching Directed Communication Topologies. Nonlinear Dyn. 2017, 90, 2507–2523. [Google Scholar] [CrossRef]
- Lyu, T.; Guo, Y.; Li, C.; Ma, G.; Zhang, H. Multiple Missiles Cooperative Guidance with Simultaneous Attack Requirement under Directed Topologies. Aerosp. Sci. Technol. 2019, 89, 100–110. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, L.; Wang, J.; Wang, C.; Wang, D.; Shan, J.; Xin, M. Consensus Based Cooperative Guidance with a Leader. In Proceedings of the 2020 IEEE 16th International Conference on Control & Automation (ICCA), Sapporo, Japan, 9–11 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 442–446. [Google Scholar]
- Zhao, J.; Yang, S. Integrated Cooperative Guidance Framework and Cooperative Guidance Law for Multi-missile. Chin. J. Aeronaut. 2018, 31, 546–555. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, J.; Li, Z. Simultaneous Attack of A Stationary Target Using Multiple Missiles: A Consensus-based Approach. Sci. China Inf. Sci. 2017, 60, 070205. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, J. Cooperative Guidance for Simultaneous Attack: A Fully Distributed, Adaptive, and Optimal Approach. Int. J. Control 2020, 93, 1765–1774. [Google Scholar] [CrossRef]
- Sinha, A.; Kumar, S.R. Supertwisting Control-based Cooperative Salvo Guidance Using Leader-follower Approach. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3556–3565. [Google Scholar] [CrossRef]
- Liu, S.; Yan, B.; Zhang, T.; Dai, P.; Liu, R.; Yan, J. Three-dimensional Cooperative Guidance Law for Intercepting Hypersonic Targets. Aerosp. Sci. Technol. 2022, 129, 107815. [Google Scholar] [CrossRef]
- An, K.; Guo, Z.Y.; Huang, W.; Xu, X.P. A Cooperative Guidance Approach Based on the Finite-time Control Theory for Hypersonic Vehicles. Int. J. Aeronaut. Space Sci. 2022, 23, 169–179. [Google Scholar] [CrossRef]
- Liu, S.; Yan, B.; Liu, R.; Dai, P.; Yan, J.; Xin, G. Cooperative Guidance Law for Intercepting a Hypersonic Target with Impact Angle Constraint. Aeronaut. J. 2022, 126, 1026–1044. [Google Scholar] [CrossRef]
- Ma, S.; Wang, X.; Wang, Z.; Chen, Q. Consensus-Based Finite-Time Cooperative Guidance with Field-of-View Constraint. Int. J. Aeronaut. Space Sci. 2022, 23, 966–979. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, B.; Zheng, J.; Wang, W. Three Dimensional Cooperative Guidance for Intercepting a Manoeuvering Target. IET Control Theory Appl. 2024, 18, 530–540. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Z.; Wang, Y.; Huang, W.; Yan, B.; Li, Y. Three-body Cooperative Active Defense Guidance Law with Overload Constraints: A Small Speed Ratio Perspective. Chin. J. Aeronaut. 2024; in press. [Google Scholar] [CrossRef]
- Li, G.; Wu, Y.; Xu, P. Adaptive Fault-tolerant Cooperative Guidance Law for Simultaneous Arrival. Aerosp. Sci. Technol. 2018, 82, 243–251. [Google Scholar] [CrossRef]
- Li, G.; Wu, Y.; Xu, P. Fixed-time Cooperative Guidance Law with Input Delay for Simultaneous arrival. Int. J. Control 2021, 94, 1664–1673. [Google Scholar] [CrossRef]
- Dong, W.; Wang, C.; Wang, J.; Xin, M. Three-dimensional Nonsingular Cooperative Guidance Law with Different Field-of-view Constraints. J. Guid. Control. Dyn. 2021, 44, 2001–2015. [Google Scholar] [CrossRef]
- Yu, H.; Dai, K.; Li, H.; Zou, Y.; Ma, X.; Ma, S.; Zhang, H. Three-dimensional Adaptive Fixed-time Cooperative Guidance Law with Impact Time and Angle Constraints. Aerosp. Sci. Technol. 2022, 123, 107450. [Google Scholar] [CrossRef]
- Wang, C.; Dong, W.; Wang, J.; Xin, M. Impact-Angle-Constrained Cooperative Guidance for Salvo Attack. J. Guid. Control. Dyn. 2022, 45, 684–703. [Google Scholar] [CrossRef]
- Shi, P.; Yu, J.; Dong, X.; Li, Q.; Ren, Z. Distributed Adaptive Cooperative Guidance Intercepting Maneuvering Targets with Actuator Faults. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 5556–5570. [Google Scholar] [CrossRef]
- Cui, L.; Zhen, Z.; Yang, J. Fixed Time Cooperative Scheme Design for Missiles Salvo Attack. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 672–676. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, S.; Guo, J. Two-stage Cooperative Guidance Strategy Using a Prescribed-time Optimal Consensus Method. Aerosp. Sci. Technol. 2020, 100, 105641. [Google Scholar] [CrossRef]
- Sinha, A.; Kumar, S.R. Cooperative Target Capture Using Predefined-time Consensus Over Fixed and Switching Networks. Aerosp. Sci. Technol. 2022, 127, 107686. [Google Scholar] [CrossRef]
- Ma, W.; Liang, X.; Fang, Y.; Deng, T.; Fu, W. Three-Dimensional Prescribed-Time Pinning Group Cooperative Guidance Law. Int. J. Aerosp. Eng. 2021, 2021, 4490211. [Google Scholar] [CrossRef]
- Cui, L.; Jin, N.; Chang, S.; Zuo, Z. Prescribed-time Guidance Scheme Design for Missile Salvo Attack. J. Frankl. Inst. 2022, 359, 6759–6782. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, H.; Gao, S.; Zhang, J. Distributed Adaptive Consensus Tracking Control for Multi-Agent System With Communication Constraints. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 1293–1306. [Google Scholar] [CrossRef]
- He, S.; Kim, M.; Song, T.; Lin, D. Three-dimensional Salvo Attack Guidance Considering Communication Delay. Aerosp. Sci. Technol. 2018, 73, 1–9. [Google Scholar] [CrossRef]
- Pham, T.V.; Vu, D.V.; Nguyen, D.T.; Dong, N.N. Loitering Formation of Fixed-Wing UAV Swarm under Communication Delay and Switching Topology. IFAC-PapersOnLine 2023, 56, 8512–8517. [Google Scholar] [CrossRef]
- Hou, Z.; Lan, X.; Chen, H.; Zhuang, X. Finite-time Cooperative Guidance Law for Multiple Missiles with Impact Angle Constraints and Switching Communication Topologies. J. Intell. Robot. Syst. 2023, 108, 85. [Google Scholar] [CrossRef]
- Song, S.H.; Ha, I.J. A Lyapunov-like Approach to Performance Analysis of 3-dimensional Pure PNG Laws. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 238–248. [Google Scholar] [CrossRef]
- Liao, X.; Ji, L. On pinning Group Consensus for Dynamical Multi-agent Networks with General Connected Topology. Neurocomputing 2014, 135, 262–267. [Google Scholar] [CrossRef]
- Yu, W.; Wen, G.; Chen, G.; Cao, J. Distributed Cooperative Control of Multi-Agent Systems; John Wiley & Sons: Singapore, 2017. [Google Scholar]
- Evans, L.C. Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Ren, Y.; Zhou, W.; Li, Z.; Liu, L.; Sun, Y. Prescribed-time Cluster Lag Consensus Control for Second-order Non-linear Leader-following Multiagent Systems. ISA Trans. 2021, 109, 49–60. [Google Scholar] [CrossRef]
- Ning, B.; Han, Q.; Zuo, Z. Practical Fixed-time Consensus for Integrator-type Multi-agent Systems: A Time Base Generator Approach. Automatica 2019, 105, 406–414. [Google Scholar] [CrossRef]
Group and [km] | [km] | ||
---|---|---|---|
1 | (−9.5, 8.2, 8.0) | (13, 13) | |
2 | (−10.3, −5.2, 7.5) | (7, 6) | |
3 | (−7.5, −9.6, 8.4) | (7, −8) | |
4 | (−9.3, −12.9, 7.4) | (10, −7) | |
5 | (−5.5, −17.6, 6.9) | (2, −9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Guo, X. Prescribed-Time Cooperative Guidance Law for Multi-UAV with Intermittent Communication. Drones 2024, 8, 748. https://doi.org/10.3390/drones8120748
Ma W, Guo X. Prescribed-Time Cooperative Guidance Law for Multi-UAV with Intermittent Communication. Drones. 2024; 8(12):748. https://doi.org/10.3390/drones8120748
Chicago/Turabian StyleMa, Wenhui, and Xiaowen Guo. 2024. "Prescribed-Time Cooperative Guidance Law for Multi-UAV with Intermittent Communication" Drones 8, no. 12: 748. https://doi.org/10.3390/drones8120748
APA StyleMa, W., & Guo, X. (2024). Prescribed-Time Cooperative Guidance Law for Multi-UAV with Intermittent Communication. Drones, 8(12), 748. https://doi.org/10.3390/drones8120748