Study on the Synthesis of Some (Un)Substituted 2-Amino-4-aryl-7-hydroxy-4H-chromene-3-carbonitriles in the Water Medium †
Abstract
:1. Introduction
2. Results and discussion
Entry | Bases (equiv) | Time (min) | Temp. (°C) | Yield of 4a b (%) |
---|---|---|---|---|
1 | NaOH (0.1) | 2 | 25 | 58 |
2 | NaHCO3 (0.1) | 2 | 25 | 65 |
3 | Na2CO3 (0.1) | 2 | 25 | 90 |
4 | K2CO3 (0.1) | 2 | 25 | 76 |
5 | Ammonium acetate (0.1) | 2 | 25 | 67 |
6 | DMAP (0.1) | 2 | 25 | 50 |
7 | Et3N (0.1) | 2 | 25 | 45 |
8 | Piperidine (0.1) | 2 | 25 | 55 |
9 | Na2CO3 (0.05) | 2 | 25 | 90 |
10 | Na2CO3 (0.15) | 2 | 25 | 88 |
11 | Na2CO3 (0.2) | 2 | 25 | 87 |
12 | Na2CO3 (0.1) | 2 | 70 | 80 |
13 | Na2CO3 (0.1) | 2 | Reflux | 70 |
14 | Na2CO3 (0.1) | 3 | 25 | 91 |
15 | Na2CO3 (0.1) | 4 | 25 | 90 |
Entry | R | Time (h) | Temp. (°C) | Yield b (%) | |
---|---|---|---|---|---|
1 | H | 4a | 2 | 25 | 90 |
2 | 4-NO2 | 4b | 2 | 25 | 88 |
3 | 3-NO2 | 4c | 2 | 25 | 78 |
4 | 2,4-dichloro | 4d | 2 | 25 | 89 |
5 | 4-Cl | 4e | 2 | 25 | 84 |
6 | 3-Cl | 4f | 2 | 25 | 76 |
7 | 2-Cl | 4g | 2 | 25 | 92 |
8 | 4-Me | 4h | 2 | 25 | 77 |
9 | 4-iPr | 4i | 2 | 25 | 62 |
10 | 4-OMe | 4j | 2 | 25 | 79 |
11 | 3-OMe | 4k | 2 | 25 | 62 |
12 | 2-OMe | 4l | 2 | 70 | 76 |
3. Experimental
3.1. General Procedure for Synthesis of 7-Hydroxy-4H-Chromene-3-Carbonitriles and Analytical Data
3.1.1. 2-Amino-7-Hydroxy-4-Phenyl-4H-Chromene-3-Carbonitrile (4a)
3.1.2. 2-Amino-7-Hydroxy-4-(4-Nitrophenyl)-4H-Chromene-3-Carbonitrile (4b)
3.1.3. 2-Amino-7-Hydroxy-4-(3-Nitrophenyl)-4H-Chromene-3-Carbonitrile (4c)
3.1.4. 2-Amino-7-Hydroxy-4-(2,4-Dichlorophenyl)-4H-Chromene-3-Aarbonitrile (4d)
3.1.5. 2-Amino-7-Hydroxy-4-(4-Chlorophenyl)-4H-Chromene-3-Carbonitrile (4e)
3.1.6. 2-Amino-7-Hydroxy-4-(3-Chlorophenyl)-4H-Chromene-3-Carbonitrile (4f)
3.1.7. 2-Amino-7-Hydroxy-4-(2-Chlorophenyl)-4H-Chromene-3-Carbonitrile (4g)
3.1.8. 2-Amino-7-Hydroxy-4-(4-Methylphenyl)-4H-Chromene-3-Carbonitrile (4h)
3.1.9. 2-Amino-7-Hydroxy-4-(4-Isopropylphenyl)-4H-Chromene-3-Carbonitrile (4i)
3.1.10. 2-Amino-7-Hydroxy-4-(4-Methoxyphenyl)-4H-Chromene-3-Carbonitrile (4j)
3.1.11. 2-Amino-7-Hydroxy-4-(3-Methoxyphenyl)-4H-Chromene-3-Carbonitrile (4k)
3.1.12. 2-Amino-7-Hydroxy-4-(2-Methoxyphenyl)-4H-Chromene-3-Carbonitrile (4l)
4. Conclusions
Acknowledgments
References
- Bugaut, X.; Constantieux, T.; Coquerel, Y.; Rodriguez, J. 1,3-Dicarbonyls in multicomponent reactions. In Multicomponent Reactions in Organic Synthesis; Zhu, J., Wang, Q., Wang, M.-X., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 109–158. [Google Scholar]
- Strecker, A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Annalen der Chemie 1850, 75, 27–45. [Google Scholar] [CrossRef]
- Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014, 16, 2958–2975. [Google Scholar] [CrossRef]
- Ibarra, I.A.; Islas-Jacome, A.; Gonzalez-Zamora, E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem. 2018, 16, 1402–1418. [Google Scholar] [CrossRef] [PubMed]
- Azizian, J.; Delbari, A.S.; Yadollahzadeh, K. One-Pot, Three-Component Synthesis of Pyrimido[4,5-b]quinoline-tetraone Derivatives in Water. Synth. Commun. 2014, 44, 3277–3286. [Google Scholar] [CrossRef]
- Butler, R.N.; Coyne, A.G. Organic synthesis reactions on-water at the organic-liquid water interface. Org. Biomol. Chem. 2016, 14, 9945–9960. [Google Scholar] [CrossRef]
- Brahmachari, G. Green synthetic approaches for biologically relevant 2-amino-4H-pyrans and 2-amino-4H-pyran-annulated heterocycles in aqueous media. In Green Synthetic Approaches for Biologically Relevant Heterocycles; Brahmachari, G., Ed.; Elsevier Inc.: Amsterdam, The Netherlands; Oxford, UK; Waltham, MS, USA, 2015; pp. 185–208. [Google Scholar]
- Chanda, A.; Fokin, V.V. Organic Synthesis “On Water”. Chem. Rev. 2009, 109, 725–748. [Google Scholar] [CrossRef]
- Brahmachari, G. Room Temperature Organic Synthesis; Elsevier Inc.: Amsterdam, The Netherlands; Oxford, UK; Waltham, MS, USA, 2015; pp. 1–240. [Google Scholar]
- Patil, S.A.; Patil, R.; Pfeffer, L.M.; Miller, D.D. Chromenes: Potential new chemotherapeutic agents for cancer. Future Med. Chem. 2013, 5, 1647–1660. [Google Scholar] [CrossRef]
- Subbareddy, C.V.; Sundarrajan, S.; Mohanapriya, A.; Subashini, R.; Shanmugam, S. Synthesis, antioxidant, antibacterial, solvatochromism and molecular docking studies of indolyl-4H-chromene-phenylprop-2-en-1-one derivatives. J. Mol. Liq. 2018, 251, 296–307. [Google Scholar] [CrossRef]
- Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Srivastava, A.; Puri, A. Discovery and synthesis of novel substituted benzocoumarins as orally active lipid modulating agents. Biorg. Med. Chem. Lett. 2011, 21, 6709–6713. [Google Scholar] [CrossRef]
- Chung, S.-T.; Huang, W.-H.; Huang, C.-K.; Liu, F.-C.; Huang, R.-Y.; Wu, C.-C.; Lee, A.-R. Synthesis and anti-inflammatory activities of 4H-chromene and chromeno[2,3-b]pyridine derivatives. Res. Chem. Intermed. 2016, 42, 1195–1215. [Google Scholar] [CrossRef]
- Rajanarendar, E.; Reddy, M.N.; Krishna, S.R.; Murthy, K.R.; Reddy, Y.N.; Rajam, M.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin-4-ones. Eur. J. Med. Chem. 2012, 55, 273–283. [Google Scholar] [CrossRef] [PubMed]
- El-Agrody, A.M.; Halawa, A.H.; Fouda, A.M.; Al-Dies, A.-A.M. The anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimidines and the structure–activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions. J. Saudi Chem. Soc. 2017, 21, 82–90. [Google Scholar] [CrossRef]
- Nancy, T.; Mary, Z.S.; Prasanna, R. 4-Aryl-4H-Chromene-3-Carbonitrile Derivates: Synthesis and Preliminary Anti-Breast Cancer Studies. J. Heterocycl. Chem. 2016, 53, 1778–1782. [Google Scholar] [CrossRef]
- Zghab, I.; Trimeche, B.; Mansour, M.B.; Hassine, M.; Touboul, D.; Jannet, H.B. Regiospecific synthesis, antibacterial and anticoagulant activities of novel isoxazoline chromene derivatives. Arab. J. Chem. 2017, 10, S2651–S2658. [Google Scholar] [CrossRef]
- Foroumadi, A.; Emami, S.; Sorkhi, M.; Nakhjiri, M.; Nazarian, Z.; Heydari, S.; Ardestani, S.K.; Poorrajab, F.; Shafiee, A. Chromene-Based Synthetic Chalcones as Potent Antileishmanial Agents: Synthesis and Biological Activity. Chem. Biol. Drug Des. 2010, 75, 590–596. [Google Scholar] [CrossRef]
- Soni, R.; Durgapal, S.D.; Soman, S.S.; Georrge, J.J. Design, synthesis and anti-diabetic activity of chromen-2-one derivatives. Arab. J. Chem. 2016. [Google Scholar] [CrossRef]
- Reddy, B.V.S.; Divya, B.; Swain, M.; Rao, T.P.; Yadav, J.S.; Vardhan, M.V.P.S.V. A domino Knoevenagel hetero-Diels–Alder reaction for the synthesis of polycyclic chromene derivatives and evaluation of their cytotoxicity. Biorg. Med. Chem. Lett. 2012, 22, 1995–1999. [Google Scholar] [CrossRef]
- Javanshir, S.; Safari, M.; Dekamin, M.G. A facile and green three-component synthesis of 2-amino-3-cyano-7-hydroxy-4H-chromenes on grinding. Scientia Iranica 2014, 21, 742–747. [Google Scholar]
- Keerthy, H.K.; Garg, M.; Mohan, C.D.; Madan, V.; Kanojia, D.; Shobith, R.; Nanjundaswamy, S.; Mason, D.J.; Bender, A.; Rangappa, K.S.; et al. Synthesis and Characterization of Novel 2-Amino-Chromene-Nitriles that Target Bcl-2 in Acute Myeloid Leukemia Cell Lines. PLoS ONE 2014, 9, e107118. [Google Scholar] [CrossRef]
- Pourmohammad, M.; Mokhtary, M. K2CO3-catalyzed synthesis of 2-amino-3-cyano-4H-chromene derivatives with different substituents in water. C. R. Chim. 2015, 18, 554–557. [Google Scholar] [CrossRef]
- Kolla, S.R.; Lee, Y.R. Ca(OH)2-mediated efficient synthesis of 2-amino-5-hydroxy-4H-chromene derivatives with various substituents. Tetrahedron 2011, 67, 8271–8275. [Google Scholar] [CrossRef]
- Zavar, S. A novel three component synthesis of 2-amino-4H-chromenes derivatives using nano ZnO catalyst. Arab. J. Chem. 2017, 10, S67–S70. [Google Scholar] [CrossRef]
- Safari, J.; Zarnegar, Z.; Heydarian, M. Practical, ecofriendly, and highly efficient synthesis of 2-amino-4H-chromenes using nanocrystalline MgO as a reusable heterogeneous catalyst in aqueous media. J. Taibah Univ. Sci. 2013, 7, 17–25. [Google Scholar] [CrossRef]
- Magar, R.L.; Thorat, P.B.; Jadhav, V.B.; Tekale, S.U.; Dake, S.A.; Patil, B.R.; Pawar, R.P. Silica gel supported polyamine: A versatile catalyst for one pot synthesis of 2-amino-4H-chromene derivatives. J. Mol. Catal. A Chem. 2013, 374–375, 118–124. [Google Scholar] [CrossRef]
- Kanakaraju, S.; Prasanna, B.; Basavoju, S.; Chandramouli, G.V.P. Ammonium acetate catalyzed an efficient one-pot three component synthesis of pyrano[3,2-c]chromene derivatives. Arab. J. Chem. 2017, 10, S2705–S2713. [Google Scholar] [CrossRef]
- Kiyani, H.; Ghorbani, F. Potassium phthalimide promoted green multicomponent tandem synthesis of 2-amino-4H-chromenes and 6-amino-4H-pyran-3-carboxylates. J. Saudi Chem. Soc. 2014, 18, 689–701. [Google Scholar] [CrossRef]
- Ghorbani, M.; Noura, S.; Oftadeh, M.; Zolfigol, M.A.; Soleimani, M.H.; Behbodi, K. Preparation of neutral ionic liquid [2-Eim] OAc with dual catalytic-solvent system roles for the synthesis of 2-amino-3-cyano-7-hydroxy-4-(aryl)-4H-chromene derivatives. J. Mol. Liq. 2015, 212, 291–300. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Y. Basic ionic liquid-catalyzed multicomponent synthesis of tetrahydrobenzo[b]pyrans and pyrano[c]chromenes. Mendeleev Commun. 2011, 21, 280–281. [Google Scholar] [CrossRef]
- Akocak, S.; Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Şen, F. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects 2017, 11, 25–31. [Google Scholar] [CrossRef]
- Şen, B.; Lolak, N.; Paralı, Ö.; Koca, M.; Şavk, A.; Akocak, S.; Şen, F. Bimetallic PdRu/graphene oxide based Catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Struct. Nano-Objects 2017, 12, 33–40. [Google Scholar] [CrossRef]
- Patel, D.S.; Avalani, J.R.; Raval, D.K. One-pot solvent-free rapid and green synthesis of 3,4-dihydropyrano[c]chromenes using grindstone chemistry. J. Saudi Chem. Soc. 2016, 20, S401–S405. [Google Scholar] [CrossRef]
- Li, L.-Y.; Zeng, Q.-Q.; Yang, Y.-X.; Hu, H.-F.; Xu, M.; Guan, Z.; He, Y.-H. A domino reaction for the synthesis of 2-amino-4H-chromene derivatives using bovine serum albumin as a catalyst. J. Mol. Catal. B Enzym. 2015, 122, 1–7. [Google Scholar] [CrossRef]
- Khaksar, S.; Rouhollahpour, A.; Talesh, S.M. A facile and efficient synthesis of 2-amino-3-cyano-4H-chromenes and tetrahydrobenzo[b]pyrans using 2,2,2-trifluoroethanol as a metal-free and reusable medium. J. Fluor. Chem. 2012, 141, 11–15. [Google Scholar] [CrossRef]
- Safari, J.; Heydarian, M.; Zarnegar, Z. Synthesis of 2-amino-7-hydroxy-4H-chromene derivatives under ultrasound irradiation: A rapid procedure without catalyst. Arab. J. Chem. 2017, 10, S2994–S3000. [Google Scholar] [CrossRef]
- Safari, J.; Javadian, L. Ultrasound assisted the green synthesis of 2-amino-4H-chromene derivatives catalyzed by Fe3O4-functionalized nanoparticles with chitosan as a novel and reusable magnetic catalyst. Ultrason. Sonochem. 2015, 22, 341–348. [Google Scholar] [CrossRef]
- Datta, B.; Pasha, M.A. Glycine catalyzed convenient synthesis of 2-amino-4H-chromenes in aqueous medium under sonic condition. Ultrason. Sonochem. 2012, 19, 725–728. [Google Scholar] [CrossRef]
- Makarem, S.; Mohammadi, A.A.; Fakhari, A.R. A multi-component electro-organic synthesis of 2-amino-4H-chromenes. Tetrahedron Lett. 2008, 49, 7194–7196. [Google Scholar] [CrossRef]
- Safari, J.; Zarnegar, Z.; Heydarian, M. Magnetic Fe3O4 Nanoparticles as Efficient and Reusable Catalyst for the Green Synthesis of 2-Amino-4H-chromene in Aqueous Media. Bull. Chem. Soc. Jpn. 2012, 85, 1332–1338. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanh, N.D.; Hai, D.S.; Hien, P.T.T.; Bich, V.T.N.; Toan, V.N.; Van, H.T.K.; Van, T.T.T. Study on the Synthesis of Some (Un)Substituted 2-Amino-4-aryl-7-hydroxy-4H-chromene-3-carbonitriles in the Water Medium. Proceedings 2019, 9, 67. https://doi.org/10.3390/ecsoc-22-05665
Thanh ND, Hai DS, Hien PTT, Bich VTN, Toan VN, Van HTK, Van TTT. Study on the Synthesis of Some (Un)Substituted 2-Amino-4-aryl-7-hydroxy-4H-chromene-3-carbonitriles in the Water Medium. Proceedings. 2019; 9(1):67. https://doi.org/10.3390/ecsoc-22-05665
Chicago/Turabian StyleThanh, Nguyen Dinh, Do Son Hai, Pham Thi Thu Hien, Vu Thi Ngoc Bich, Vu Ngoc Toan, Hoang Thi Kim Van, and Tran Thi Thanh Van. 2019. "Study on the Synthesis of Some (Un)Substituted 2-Amino-4-aryl-7-hydroxy-4H-chromene-3-carbonitriles in the Water Medium" Proceedings 9, no. 1: 67. https://doi.org/10.3390/ecsoc-22-05665
APA StyleThanh, N. D., Hai, D. S., Hien, P. T. T., Bich, V. T. N., Toan, V. N., Van, H. T. K., & Van, T. T. T. (2019). Study on the Synthesis of Some (Un)Substituted 2-Amino-4-aryl-7-hydroxy-4H-chromene-3-carbonitriles in the Water Medium. Proceedings, 9(1), 67. https://doi.org/10.3390/ecsoc-22-05665