Antimicrobial Activity of Phenolic Compounds Extracted from Platanus hybrida: Exploring Alternative Therapies for a Post-Antibiotic Era †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Componentsl and Extract Preparation
2.2. Antibacterial Activity
2.2.1. Bacterial Strains
2.2.2. Antimicrobial Susceptibility Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Imane:, N.I.; Fouzia:, H.; Azzahra, L.F.; Ahmed, E.; Ismail, G.; Idrissa, D.; Mohamed, K.H.; Sirine, F.; L’Houcine, O.; Noureddine, B. Chemical composition, antibacterial and antioxidant activities of some essential oils against multidrug resistant bacteria. Eur. J. Integr. Med. 2020, 35, 101074. [Google Scholar] [CrossRef]
- Ben Said, L.; Emond-Rheault, J.G.; Soltani, S.; Telhig, S.; Zirah, S.; Rebuffat, S.; Diarra, M.S.; Goodridge, L.; Levesque, R.C.; Fliss, I. Phenomic and genomic approaches to studying the inhibition of multiresistant Salmonella enterica by microcin J25. Environ. Microbiol. 2020, 22, 2907–2920. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.S.; Oshiro-Junior, J.A.; Sato, M.R.; Conceição, M.M.; Medeiros, A.C.D. Polymeric nanoparticle associated with ceftriaxone and extract of schinopsis brasiliensis engler against Multiresistant enterobacteria. Pharmaceutics 2020, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, A.C.J.; Freitas, P.R.; Barbosa, C.R.D.S.; Muniz, D.F.; Rocha, J.E.; de Araújo Neto, J.B.; da Silva, M.M.C.; Moura, T.F.; Pereira, R.L.S.; Ribeiro-Filho, J.; et al. Essential oil of croton ceanothifolius Baill. Potentiates the effect of antibiotics against multiresistant bacteria. Antibiotics 2020, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Perdigão Neto, L.V.; Oliveira, M.S.; Orsi, T.D.; Prado, G.V.B. do; Martins, R.C.R.; Leite, G.C.; Marchi, A.P.; Lira, E.S. de; Côrtes, M.F.; Espinoza, E.P.S.; et al. Alternative drugs against multiresistant Gram-negative bacteria. J. Glob. Antimicrob. Resist. 2020, 23, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.R.; de Araújo, A.C.J.; dos Santos Barbosa, C.R.; Muniz, D.F.; Rocha, J.E.; de Araújo Neto, J.B.; da Silva, M.M.C.; Silva Pereira, R.L.; da Silva, L.E.; do Amaral, W.; et al. Characterization and antibacterial activity of the essential oil obtained from the leaves of Baccharis coridifolia DC against multiresistant strains. Microb. Pathog. 2020, 145, 104223. [Google Scholar] [CrossRef] [PubMed]
- Edziri, H.; Haddad, O.; Saidana, D.; Chouchen, S.; Skhiri, F.; Mastouri, M.; Flamini, G. Ruscus hypophyllum L. extracts: Chemical composition, antioxidant, anticoagulant, and antimicrobial activity against a wide range of sensitive and multi-resistant bacteria. Environ. Sci. Pollut. Res. 2020, 27, 17063–17071. [Google Scholar] [CrossRef] [PubMed]
- Alcázar, P.; Galán, C.; Torres, C.; Domínguez-Vilches, E. Detection of airborne allergen (Pla a 1) in relation to Platanus pollen in Córdoba, South Spain. Ann. Agric. Environ. Med. 2015, 22, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Cariñanos, P.; Ruiz-Peñuela, S.; Valle, A.M.; de la Guardia, C.D. Assessing pollination disservices of urban street-trees: The case of London-plane tree (Platanus x hispanica Mill. ex Münchh). Sci. Total Environ. 2020, 737, 139722. [Google Scholar] [CrossRef] [PubMed]
- Pilotti, M.; Brunetti, A.; Tizzani, L.; Marani, O. Platanus × acerifolia genotypes surviving to inoculation with Ceratocystis platani (the agent of canker stain): First screening and molecular characterization. Euphytica 2009, 169, 1–17. [Google Scholar] [CrossRef]
- Ceruso, M.; Clement, J.A.; Todd, M.J.; Zhang, F.; Huang, Z.; Anastasio, A.; Pepe, T.; Liu, Y. The inhibitory effect of plant extracts on growth of the foodborne pathogen, listeria monocytogenes. Antibiotics 2020, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.P.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Silva, V.; Singh, R.K.; Gomes, N.; Soares, B.G.; Silva, A.; Falco, V.; Capita, R.; Alonso-Calleja, C.; Pereira, J.E.; Amaral, J.S.; et al. Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Kutbay, I.; Akfırat, F.Ş. Mapping of Biochemical Constituents in Platanus acerifolia Leaves By Analytical Techniques. Procedia - Soc. Behav. Sci. 2015, 195, 1719–1727. [Google Scholar] [CrossRef]
- Chatzigeorgiou, S.; Thai, Q.D.; Tchoumtchoua, J.; Tallas, K.; Tsakiri, E.N.; Papassideri, I.; Halabalaki, M.; Skaltsounis, A.-L.; Trougakos, I.P. Isolation of natural products with anti-ageing activity from the fruits of Platanus orientalis. Phytomedicine 2017, 33, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants 2020, 9. [Google Scholar] [CrossRef] [PubMed]
MIC (mg/mL) (Inhibition zones (mm)) | |||
---|---|---|---|
Bacterial Strain | Trunk | Fruit | Leaf |
Gram-positive | |||
L. monocytogenes | 100 (10) | 10 (9) | 10 (8) |
B. cereus | - | 25 (11) | - |
S. aureus | - | 25 (8) | 50 (9) |
S. epidermidis | - | 25 (10) | 25 (13) |
E. faecalis | - | - | - |
E. faecium | - | - | - |
Gram-negative | |||
P. aeruginosa | - | 25 (12) | 75 (9) |
K. pneumoniae | - | 10 (12) | 10 (10) |
E. coli | - | 10 (9) | 25 (10) |
S. enteritidis | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, J.; Silva, V.; Aires, A.; Carvalho, R.; Igrejas, G.; Poeta, P. Antimicrobial Activity of Phenolic Compounds Extracted from Platanus hybrida: Exploring Alternative Therapies for a Post-Antibiotic Era. Proceedings 2020, 66, 18. https://doi.org/10.3390/proceedings2020066018
Ribeiro J, Silva V, Aires A, Carvalho R, Igrejas G, Poeta P. Antimicrobial Activity of Phenolic Compounds Extracted from Platanus hybrida: Exploring Alternative Therapies for a Post-Antibiotic Era. Proceedings. 2020; 66(1):18. https://doi.org/10.3390/proceedings2020066018
Chicago/Turabian StyleRibeiro, Jessica, Vanessa Silva, Alfredo Aires, Rosa Carvalho, Gilberto Igrejas, and Patrícia Poeta. 2020. "Antimicrobial Activity of Phenolic Compounds Extracted from Platanus hybrida: Exploring Alternative Therapies for a Post-Antibiotic Era" Proceedings 66, no. 1: 18. https://doi.org/10.3390/proceedings2020066018
APA StyleRibeiro, J., Silva, V., Aires, A., Carvalho, R., Igrejas, G., & Poeta, P. (2020). Antimicrobial Activity of Phenolic Compounds Extracted from Platanus hybrida: Exploring Alternative Therapies for a Post-Antibiotic Era. Proceedings, 66(1), 18. https://doi.org/10.3390/proceedings2020066018