Vibration Suppression of the Vehicle Mechatronic ISD Suspension Using the Fractional-Order Biquadratic Electrical Network
Abstract
1. Introduction
2. Model of Suspension Dynamics
2.1. Model of Vehicle Mechatronic ISD Suspension
2.2. Fractional-Order Biquadratic Electrical Network
3. Parameter Optimization
3.1. NSGA-II Multi-Objective Genetic Algorithm
3.2. Positive Real Synthetic Passive Implementation of Fractional-Order Biquadratic Transfer
4. Simulation Analysis
4.1. Random Pavement Input
4.2. Frequency Responses Analysis
4.3. Impulse Pavement Input
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| RMS | Root-mean-square |
| ISD | Inerter-spring-damper |
| DOF | Degrees of freedom |
| NSGA | Non-dominated sorting genetic algorithms |
| FO | Fractional-order |
| IO | Integer-order |
| PTP | Peak-to-peak |
Appendix A
Appendix B

References
- Sankaranarayanan, V.; Emekli, M.E.; Gilvenc, B.A.; Guvenc, L.; Ozturk, E.S.; Ersolmaz, E.S.; Sinal, M. Semiactive suspension control of a light commercial vehicle. IEEE/ASME Trans. Mechatron. 2008, 13, 598–604. [Google Scholar] [CrossRef]
- Liu, C.N.; Chen, L.; Yang, X.F.; Zhang, X.L.; Yang, Y. General theory of skyhook control and its application to semi-active suspension control strategy design. IEEE Access 2019, 7, 101552–101560. [Google Scholar] [CrossRef]
- Shen, Y.J.; Chen, A.; Du, F.; Yang, X.F.; Liu, Y.L.; Chen, L. Performance enhancements of semi-active vehicle air ISD suspension. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 09544070241233024. [Google Scholar] [CrossRef]
- Shen, Y.J.; Jia, M.Q.; Yang, X.F.; Liu, Y.L.; Chen, L. Vibration suppression using a mechatronic PDD-ISD-combined vehicle suspension system. Int. J. Mech. Sci. 2023, 250, 108277. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Nguyen, T.A.; Dang, N.D. A novel sliding mode control algorithm for an active suspension system considering with the hydraulic actuator. Lat. Am. J. Solids Struct. 2022, 19, e424. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Z.; Zhou, Y.; Wang, X. A nonlinear model predictive control for air suspension in hub motor electric vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2025, 239, 2–3. [Google Scholar] [CrossRef]
- Yin, Y.; Li, S.E.; Tang, K.; Cao, W.; Wu, W.; Li, H. Approximate optimal filter design for vehicle system through actor-critic reinforcement learning. Automot. Innov. 2022, 5, 415–426. [Google Scholar] [CrossRef]
- Zhong, S.; Zhao, Y.; Ge, L.; Shan, Z.; Ma, F. Vehicle state and bias estimation based on unscented kalman filter with vehicle hybrid kinematics and dynamics models. Automot. Innov. 2023, 6, 571–585. [Google Scholar] [CrossRef]
- Smith, M.C. Synthesis of mechanical networks: The inerter. IEEE Trans. Autom. Control 2002, 47, 1648–1662. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, K.; Zang, J.; Ni, Z.; Zhu, Y.; Chen, L. Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions. Appl. Math. Mech. 2019, 40, 1791–1804. [Google Scholar] [CrossRef]
- Shen, W.; Niyitangamahoro, A.; Feng, Z.; Zhu, H. Tuned inerter dampers for civil structures subjected to earthquake ground motions: Optimum design and seismic performance. Eng. Struct. 2019, 198, 109470. [Google Scholar] [CrossRef]
- Qiu, Z.; Han, S.; Na, J.; Wang, C. Vertical suspension optimization for a high-speed train with PSO intelligent method. Comput. Intell. Neurosci. 2021, 2021, 1526792. [Google Scholar] [CrossRef]
- Smith, M.C.; Wang, F.C. Performance benefits in passive vehicle suspensions employing inerters. Veh. Syst. Dyn. 2004, 42, 235–257. [Google Scholar] [CrossRef]
- Nie, J.; Yang, Y.; Jiang, T.; Zhang, H. Passive skyhook suspension reduction for improvement of ride comfort in an off-road vehicle. IEEE Access 2019, 7, 150710–150719. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, J.; Nie, J.; Wei, H.; Chen, L. Simulation analysis and experiment research on hydro-pneumatic isd suspension. Shock Vib. 2021, 2021, 2095350. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Meng, H.; Chen, L.Q. Nonlinear vibration and dynamic performance analysis of the inerter-based multi-directional vibration isolator. Arch. Appl. Mech. 2022, 92, 3597–3629. [Google Scholar] [CrossRef]
- Fu, D.; Ming, M.; Yijie, C.; Yajun, W.; Yafeng, Z. Structure design and performance analysis of ISD suspension based on dynamic model and parameter optimization. Shock Vib. 2014, 33, 59–65. Available online: https://jvs.sjtu.edu.cn/CN/Y2014/V33/I6/59 (accessed on 25 January 2024).
- Shen, Y.; Qiu, D.; Yang, X.; Chen, J.; Guo, Y.; Zhang, T. Vibration isolation performance analysis of a nonlinear fluid inerter-based hydro-pneumatic suspension. Int. J. Struct. Stab. Dyn. 2024. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Bu, J.G.; Lan, X.D.; Zhou, M.; Lv, K.X. Performance optimization of flywheel motor by using NSGA-2 and AKMMP. IEEE Trans. Magn. 2018, 54, 8103707. [Google Scholar] [CrossRef]
- Wang, X.; Fan, Y.; Lu, X.; Chen, Q.; Lee, C.H. Multiobjective optimization of a dual stator brushless hybrid excitation motor based on response surface model and NSGA 2. IEEE Trans. Ind. Appl. 2022, 58, 6105–6114. [Google Scholar] [CrossRef]
- Wang, P.; Zang, T.; Xiao, W.; Zhang, Y.; He, J.; Men, H.; Li, J. An optimized resource allocation approach in limited emergency situations using NSGA-II. In Proceedings of the 2023 9th International Conference on Big Data and Information Analytics (Big DIA), Sorrento, Italy, 15–18 December 2023; pp. 258–264. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, T.; Shen, Y.; Liu, Y.; Bui, V.; Qiu, D. Tradeoff analysis of the energy-harvesting vehicle suspension system employing inerter element. Energy 2024, 308, 132841. [Google Scholar] [CrossRef]
- Brune, O. Synthesis of a Finite Two-Terminal Whose Driving-Point Impedance Is a Function of Frequency. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1931. [Google Scholar] [CrossRef]
- Bott, R.; Duffin, R.J. Impedance synthesis without use of transformers. J. Appl. Phys. 1949, 20, 816. [Google Scholar] [CrossRef]
- Papageorgiou, C.; Smith, M.C. Positive real synthesis using matrix inequalities for mechanical networks: Application to vehicle suspension. IEEE Trans. Control Syst. Technol. 2006, 14, 423–435. [Google Scholar] [CrossRef]
- Jiang, J.Z.; Smith, M.C. Series-parallel six-element synthesis of biquadratic impedances. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2543–2554. [Google Scholar] [CrossRef]
- Jiang, J.Z.; Smith, M.C. Regular positive-real functions and five-element network synthesis for electrical and mechanical networks. IEEE Trans. Autom. Control 2010, 56, 1275–1290. [Google Scholar] [CrossRef]
- Wang, K. Implementation of Biquadratic Function in Passive Network Synthesis. Master’s Thesis, Nanjing University of Science and Technology, Nanjing, China, 2013. [Google Scholar]
- Zhang, S.Y.; Jiang, J.Z.; Wang, H.L.; Neild, S. Synthesis of essential-regular bicubic impedances. Int. J. Circuit Theory Appl. 2017, 45, 1482–1496. [Google Scholar] [CrossRef]
- Wang, K.; Chen, M.Z.; Liu, F. Series-parallel mechanical circuit synthesis of a positive-real third-order admittance using at most six passive elements for inerter-based control. J. Frankl. Inst. 2023, 360, 5442–5480. [Google Scholar] [CrossRef]
- Wang, K.; Chen, M.Z. Passive mechanical realizations of bicubic impedances with no more than five elements for inerter-based control design. J. Frankl. Inst. 2021, 358, 5353–5385. [Google Scholar] [CrossRef]
- Gutierrez, R.E.; Rosário, J.M.; Tenreiro Machado, J. Fractional order calculus: Basic concepts and engineering applications. Math. Probl. Eng. 2010, 2010, 375858. [Google Scholar] [CrossRef]
- Caponetto, R.; Graziani, S.; Pappalardo, F.L.; Sapuppo, F. Experimental characterization of ionic polymer metal composite as a novel fractional order element. Adv. Math. Phys. 2013, 2013, 953695. [Google Scholar] [CrossRef]
- Nasreen, N.; Lu, D.; Zhang, Z.; Akgül, A.; Younas, U.; Nasreen, S.; Al-Ahmadi, A.N. Propagation of optical pulses in fiber optics modelled by coupled space-time fractional dynamical system. Alex. Eng. J. 2023, 73, 173–187. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J.; Tai, Y.; Xu, X.; Chen, N. Critical damping design method of vibration isolation system with both fractional-order inerter and damper. Mech. Adv. Mater. Struct. 2022, 29, 1348–1359. [Google Scholar] [CrossRef]
- Zhang, L.; Kartci, A.; Elwakil, A.; Bagci, H.; Salama, K.N. Fractional-order inductor: Design, simulation, and implementation. IEEE Access 2021, 9, 73695–73702. [Google Scholar] [CrossRef]
- Tsirimokou, G.; Psychalinos, C.; Elwakil, A.S.; Salama, K.N. Experimental behavior evaluation of series and parallel connected constant phase elements. AEU-Int. J. Electron. Commun. 2017, 74, 5–12. [Google Scholar] [CrossRef]
- Wang, F.C.; Chan, H.A. Vehicle suspensions with a mechatronic network strut. Veh. Syst. Dyn. 2011, 49, 811–830. [Google Scholar] [CrossRef]
- Shen, Y.J.; Hua, J.; Fan, W.; Liu, Y.L.; Yang, X.F.; Chen, L. Optimal design and dynamic performance analysis of a fractional-order electrical network-based vehicle mechatronic ISD suspension. Mech. Syst. Signal Process. 2023, 184, 109718. [Google Scholar] [CrossRef]
- Shen, Y.J.; Hua, J.; Hou, Q.H.; Xia, X.H.; Liu, Y.L.; Yang, X.F. Performance analysis of the fractional-order vehicle mechatronic ISD suspension with parameter perturbation. J. Theor. Appl. Mech. 2022, 60, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Yu, M.; Evangelou, S.A.; Jaimoukha, I.M.; Dini, D. Mu-synthesis PID control of full-car with parallel active link suspension under variable payload. IEEE Trans. Veh. Technol. 2022, 72, 176–189. [Google Scholar] [CrossRef]
- Liang, G.; Ma, L. Multivariate theory-based passivity criteria for linear fractional networks. Int. J. Circuit Theory Appl. 2018, 46, 1358–1371. [Google Scholar] [CrossRef]
- Liang, G.; Huo, X. Synthesis of fractional-order biquadratic immittance functions. J. Circuits Syst. Comput. 2019, 28, 1950187. [Google Scholar] [CrossRef]
- Gadhvi, B.; Savsani, V.; Patel, V. Multi-objective optimization of vehicle passive suspension system using NSGA-II, SPEA2 and PESA-II. Procedia Technol. 2016, 23, 361–368. [Google Scholar] [CrossRef]
- Onat, C.; Kucukdemiral, I.B.; Sivrioglu, S.; Yuksek, I.; Cansever, G. LPV gain-scheduling controller design for a non-linear quarter-vehicle active suspension system. Trans. Inst. Meas. Control 2009, 31, 71–95. [Google Scholar] [CrossRef]
- Ramachandran, V.; Rao, A.S. The real part of a multivariable positive real function and some applications. IEEE Trans. Circuits Syst. 1974, 21, 598–605. [Google Scholar] [CrossRef]
- Chen, M.Z.; Smith, M.C. A note on tests for positive-real functions. IEEE Trans. Autom. Control 2009, 54, 390–393. [Google Scholar] [CrossRef]
- Bose, N.K. A criterion to determine if two multivariable polynomials are relatively prime. Proc. IEEE 1972, 60, 134–135. [Google Scholar] [CrossRef]
- Huo, X. Passive Synthesis of Fractional Order Biquadratic Impedance Functions. Master’s Thesis, North China Electric Power University, Beijing, China, 2019. [Google Scholar]
- Loizos, A.; Plati, C. An alternative approach to pavement roughness evaluation. Int. J. Pavement Eng. 2008, 9, 69–78. [Google Scholar] [CrossRef]
- Shao, X.; Naghdy, F.; Du, H.; Qin, Y. Coupling effect between road excitation and an in-wheel switched reluctance motor on vehicle ride comfort and active suspension control. J. Sound Vib. 2019, 443, 683–702. [Google Scholar] [CrossRef]















| Parameters | Values |
| Sprung Mass ms | 675/kg |
| Unsprung Mass mu | 62.5/kg |
| Tire Stiffness kt | 290,000/N∙m−1 |
| Spring Stiffness k | 53,100/N∙m−1 |
| Parameters | Values |
| Damper coefficient c | 1000/N·s·m−1 |
| Inertance b | 10/kg |
| A | 0.21 |
| B | 3.70 |
| C | 0.01 |
| D | 0.20 |
| F | 0.52 |
| G | 2.88 |
| H | 49.13 |
| Fractional order α1 | 0.82 |
| Fractional order β1 | 0.88 |
| Parameters | Values |
| Resistance R1 | 4.69/Ω |
| Resistance R2 | 0.15/Ω |
| Resistance R3 | 246.86/Ω |
| Fractional-order capacitance Cα | 0.08/F |
| Fractional-order of capacitance α2 | 0.82 |
| Fractional-order inductance Lβ | 0.28/H |
| Fractional-order of inductance β2 | 0.88 |
| Suspension | Velocity u/(m/s) | RMS of Vehicle Body Acceleration/(m·s−2) | RMS of Suspension Working Space/(m) | RMS of Dynamic Tire Load/(N) |
|---|---|---|---|---|
| Traditional passive suspension | 10 | 0.9062 | 0.0081 | 844.0 |
| 20 | 1.2641 | 0.0112 | 1184.5 | |
| 30 | 1.5178 | 0.0133 | 1435.1 | |
| IO-ISD suspension | 10 | 0.8550 | 0.0068 | 832.8 |
| 20 | 1.1966 | 0.0094 | 1171.4 | |
| 30 | 1.4438 | 0.0111 | 1423.8 | |
| FO-ISD suspension | 10 | 0.8304 | 0.0066 | 821.4 |
| 20 | 1.1632 | 0.0091 | 1155.9 | |
| 30 | 1.4054 | 0.0108 | 1406.2 |
| Traditional Passive Suspension | IO-ISD Suspension | FO-ISD Suspension | |
|---|---|---|---|
| PTP value of the vehicle body acceleration/(m·s−2) | 13.6815 | 13.1320 | 12.8691 |
| PTP value of the suspension working space/(m) | 0.0428 | 0.0412 | 0.0416 |
| PTP value of the dynamic tire load/(N) | 21,488 | 21,298 | 21,314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Li, Z.; Tian, X.; Ji, K.; Yang, X. Vibration Suppression of the Vehicle Mechatronic ISD Suspension Using the Fractional-Order Biquadratic Electrical Network. Fractal Fract. 2025, 9, 106. https://doi.org/10.3390/fractalfract9020106
Shen Y, Li Z, Tian X, Ji K, Yang X. Vibration Suppression of the Vehicle Mechatronic ISD Suspension Using the Fractional-Order Biquadratic Electrical Network. Fractal and Fractional. 2025; 9(2):106. https://doi.org/10.3390/fractalfract9020106
Chicago/Turabian StyleShen, Yujie, Zhaowei Li, Xiang Tian, Kai Ji, and Xiaofeng Yang. 2025. "Vibration Suppression of the Vehicle Mechatronic ISD Suspension Using the Fractional-Order Biquadratic Electrical Network" Fractal and Fractional 9, no. 2: 106. https://doi.org/10.3390/fractalfract9020106
APA StyleShen, Y., Li, Z., Tian, X., Ji, K., & Yang, X. (2025). Vibration Suppression of the Vehicle Mechatronic ISD Suspension Using the Fractional-Order Biquadratic Electrical Network. Fractal and Fractional, 9(2), 106. https://doi.org/10.3390/fractalfract9020106

