Analysis of Fractal Properties of Atmospheric Turbulence and the Practical Applications
Abstract
1. Introduction
2. Data and Methods
2.1. Observational Site and Instruments
2.2. Data Pre-Processing and Selection
- (1)
- either the angle between the sonic anemometer sensing probe and wind direction or the angle between the connector of the two towers and wind direction was larger than ±120 (accepted wind direction range is shown in Figure 1);
- (2)
- the mean wind speeds were smaller than 0.5 m/s or larger than 5 m/s;
- (3)
- the friction velocity was smaller than 0.05 m/s;
- (4)
- the absolute value of sensible heat flux was smaller than 5 .
2.3. Method of Hilbert–Huang Transform
- (1)
- Conducting Empirical Mode Decomposition (EMD):
- (2)
- Performing the Hilbert transform for each IMF according to the definition:
- (3)
- Calculating the Hilbert marginal spectrum:
2.4. Calculation of Fractal Dimensions
2.5. Fractal Dimensions Refining Similarity Relationships
2.6. Fractal Dimensions Reconstructing Turbulence Data
3. Characteristics of Fractal Dimensions
3.1. Time Series of Fractal Dimensions
3.2. Similarity Relationship of Fractal Dimensions
4. Similarity Relationship Refined by Fractal Dimensions
4.1. Refined Relationships of Dynamic Properties
4.2. Refined Relationships of Thermodynamic Properties
5. Reconstruction of Turbulent Fluxes by Fractal Dimensions
5.1. Fractal Dimensions Influenced by Scale
5.2. Identification of Non-Turbulent Motions
- (1)
- Locating the maximums and minimums of the relationship between and the average frequencies of multivariate IMFs;
- (2)
- Finding the mutation points of slope of the relationship between and the average frequencies of multivariate IMFs, where the ratio of the slope between the adjacent points is higher than 2;
- (3)
- Searching for boundaries according to the progressive criteria: (a) or within ; (b) within ; (c) or that are below ; (d) the frequency that divides IMFs and residuals;
- (4)
- Once the former criterion is satisfied, the latter one is no longer considered, and the highest frequency within the same criterion is taken as the boundary frequency between turbulent and non-turbulent motions.
- (1)
- : the is higher and fluctuates with a large uncertainty; this is because not enough information is covered by the sample.
- (2)
- : the slightly decreases and reaches convergence, which means the turbulent properties are reflected by the sample and the can be effectively identified.
- (3)
- : the convergence of is broken, and the fluctuation becomes larger, which implies that the expanding of the sample makes large-scale motions blur the fractal dimensions and thus affect the estimation of .
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Mandelbrot, B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Henry Holt and Company: New York, NY, USA, 1983. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2003; pp. 1–26. [Google Scholar] [CrossRef]
- Garratt, J.R. Review: The Atmospheric Boundary Layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: Oxford, UK, 1994. [Google Scholar] [CrossRef]
- Sagan, H. Space-Filling Curves; Springer: New York, NY, USA, 1994; pp. 145–167. [Google Scholar] [CrossRef]
- Sharifi-Viand, A.; Mahjani, M.G.; Jafarian, M. Investigation of Anomalous Diffusion and Multifractal Dimensions in Polypyrrole Film. J. Electroanal. Chem. 2012, 67, 51–57. [Google Scholar] [CrossRef]
- Rényi, A. On the Dimension and Entropy of Probability Distributions. Acta Math. Hung. 1959, 10, 193–215. [Google Scholar] [CrossRef]
- Farmer, J.D.; Ott, E.; Yorke, J.A. The Dimension of Chaotic Attractors. Phys. D Nonlinear Phenom. 1983, 7, 153–180. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Measuring the Strangeness of Strange Attractors. Phys. D Nonlinear Phenom. 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Chhabra, A.; Jensen, R.V. Direct Determination of the f(α) Singularity Spectrum. Phys. Rev. Lett. 1989, 62, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.J.; Cronin, A. Unbiased Estimation of Multi-Fractal Dimensions of Finite Data Sets. Phys. A Stat. Mech. Appl. 1996, 233, 867–878. [Google Scholar] [CrossRef]
- Posadas, A.N.D.; Giménez, D.; Bittelli, M.; Vaz, C.M.P.; Flury, M. Multifractal Characterization of Soil Particle-Size Distributions. Soil Sci. Soc. Am. J. 2001, 65, 1361–1367. [Google Scholar] [CrossRef]
- Alberti, T.; Consolini, G.; Ditlevsen, P.D.; Donner, R.V.; Quattrociocchi, V. Multiscale Measures of Phase-Space Trajectories. Chaos 2020, 30, 123116. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, H.G.E.; Procaccia, I. The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors. Phys. D Nonlinear Phenom. 1983, 8, 435–444. [Google Scholar] [CrossRef]
- de la Fuente Marcos, D.; de la Fuente Marcos, C. Multifractality in a Ring of Star Formation: The Case of Arp 220. Astron. Astrophys. 2006, 454, 473–480. [Google Scholar] [CrossRef]
- Trevino, J.; Liew, S.F.; Noh, H.; Cao, H.; Negro, L.D.; Structure, G. Multifractal Spectra and Localized Optical Modes of Aperiodic Vogel Spirals. Opt. Express 2012, 20, 3015–3033. [Google Scholar] [CrossRef]
- Gerges, F.; Geng, X.; Nassif, H.; Boufadel, M.C. Anisotropic Multifractal Scaling of Mount Lebanon Topography: Approximate Conditioning. Fractals 2021, 29, 2150112. [Google Scholar] [CrossRef]
- Ivanov, P.C.; Amaral, L.A.N.; Goldberger, A.L.; Havlin, S.; Rosenblum, M.G.; Struzik, Z.R.; Stanley, H.E. Multifractality in Human Heartbeat Dynamics. Nature 1999, 399, 461–465. [Google Scholar] [CrossRef] [PubMed]
- CIUCIU, P.; Varoquaux, G.; Abry, P.; Sadaghiani, S.; Kleinschmidt, A. Scale-Free and Multifractal Properties of Fmri Signals During Rest and Task. Front. Physiol. 2012, 3, 186. [Google Scholar] [CrossRef] [PubMed]
- Zorick, T.; Mandelkern, M.A. Multifractal Detrended Fluctuation Analysis of Human Eeg: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique. PLoS ONE 2013, 8, e68360. [Google Scholar] [CrossRef]
- Saeedi, P.; Sorensen, S. An Algorithmic Approach to Generate after-Disaster Test Fields for Search and Rescue Agents. Lect. Notes Eng. Comput. Sci. 2009, 1, 93–98. [Google Scholar]
- Chen, Y. Modeling Fractal Structure of City-Size Distributions Using Correlation Functions. PLoS ONE 2011, 6, e24791. [Google Scholar] [CrossRef]
- Kamenshchikov, S.A. Transport Catastrophe Analysis as an Alternative to a Monofractal Description: Theory and Application to Financial Crisis Time Series. J. Chaos 2014, 2014, 346743. [Google Scholar] [CrossRef]
- Meneveau, C.; Sreenivasan, K.R. The Multifractal Nature of Turbulent Energy Dissipation. J. Fluid Mech. 1991, 224, 429–484. [Google Scholar] [CrossRef]
- Halsey, T.C.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.; Shraiman, B.I. Fractal Measures and Their Singularities: The Characterization of Strange Sets. Phys. Rev. A 1986, 33, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Benzi, R.; Biferale, L.; Paladin, G.; Vulpiani, A.; Vergassola, M. Multifractality in the Statistics of the Velocity Gradients in Turbulence. Phys. Rev. Lett. 1991, 67, 2299–2302. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D. The Weather and Climate: Emergent Laws and Multifractal Cascades; Schertzer, D., Lovejoy, S., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 1–20. [Google Scholar] [CrossRef]
- Alberti, T.; Donner, R.V.; Vannitsem, S. Multiscale Fractal Dimension Analysis of a Reduced Order Model of Coupled Ocean–Atmosphere Dynamics. Earth Syst. Dyn. 2021, 12, 837–855. [Google Scholar] [CrossRef]
- Alberti, T.; Faranda, D.; Donner, R.V.; Caby, T.; Carbone, V.; Consolini, G.; Dubrulle, B.; Vaienti, S. Small-Scale Induced Large-Scale Transitions in Solar Wind Magnetic Field. Astrophys. J. Lett. 2021, 914, L6. [Google Scholar] [CrossRef]
- Carbone, F.; Alberti, T.; Faranda, D.; Telloni, D.; Consolini, G.; Sorriso-Valvo, L. Local Dimensionality and Inverse Persistence Analysis of Atmospheric Turbulence in the Stable Boundary Layer. Phys. Rev. E 2022, 106, 064211. [Google Scholar] [CrossRef] [PubMed]
- Altan, A.; Karasu, S.; Bekiros, S. Digital Currency Forecasting with Chaotic Meta-Heuristic Bio-Inspired Signal Processing Techniques. Chaos Solit. Fractals 2019, 126, 325–336. [Google Scholar] [CrossRef]
- Karasu, S.; Altan, A. Crude Oil Time Series Prediction Model Based on Lstm Network with Chaotic Henry Gas Solubility Optimization. Energy 2022, 242, 122964. [Google Scholar] [CrossRef]
- Özçelik, Y.B.; Altan, A. Overcoming Nonlinear Dynamics in Diabetic Retinopathy Classification: A Robust Ai-Based Model with Chaotic Swarm Intelligence Optimization and Recurrent Long Short-Term Memory. Fractal Fract. 2023, 7, 598. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Dissipation of Energy in Locally Isotropic Turbulence. Dokl. Akad. Nauk SSSR 1941, 32, 16. [Google Scholar]
- Monin, A.S.; Obukhov, A.M. Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere. Akad. Nauk SSSR Geophiz. Inst. 1954, 24, 163–187. [Google Scholar]
- Foken, T. 50 Years of the Monin–Obukhov Similarity Theory. Bound.-Layer Meteorol. 2006, 119, 431–447. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H. Size Distribution of Dust Aerosols Observed over the Horqin Sandy Land in Inner Mongolia, China. Aeolian Res. 2015, 17, 231–239. [Google Scholar] [CrossRef]
- Park, S.-U.; Park, M.-S. Aerosol Size Distributions Observed at Naiman in the Asian Dust Source Region of Inner Mongolia. Atmos. Environ. 2014, 82, 17–23. [Google Scholar] [CrossRef]
- Zhao, H.-L.; Zhou, R.-L.; Su, Y.-Z.; Zhang, H.; Zhao, L.-Y.; Drake, S. Shrub Facilitation of Desert Land Restoration in the Horqin Sand Land of Inner Mongolia. Ecol. Eng. 2007, 31, 1–8. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Quality Control and Flux Sampling Problems for Tower and Aircraft Data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Huang, N.E.; Long, S.R.; Shen, Z. Advances in Applied Mechanics; Hutchinson, J.W., Wu, T.Y., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 32, pp. 59C–117C. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Huang, Y.X.; Schmitt, F.G.; Lu, Z.M.; Liu, Y.L. An Amplitude-Frequency Study of Turbulent Scaling Intermittency Using Empirical Mode Decomposition and Hilbert Spectral Analysis. Europhys. Lett. 2008, 84, 40010. [Google Scholar] [CrossRef]
- Rilling, G.; Flandrin, P.; Goncalves, P.; Lilly, J.M. Bivariate Empirical Mode Decomposition. IEEE Signal Process. Lett. 2007, 14, 936–939. [Google Scholar] [CrossRef]
- Rehman, N.; Mandic, D.P. Multivariate Empirical Mode Decomposition. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 1291–1302. [Google Scholar] [CrossRef]
- Rehman, N.; Mandic, D.P. Empirical Mode Decomposition for Trivariate Signals. IEEE Signal Process. Lett. 2009, 58, 1059–1068. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, H.S.; Schmitt, F.G.; Huang, Y.X.; Cai, X.H.; Song, Y.; Huang, X.; Zhang, H. Investigation of Turbulence Behaviour in the Stable Boundary Layer Using Arbitrary-Order Hilbert Spectra. Bound.-Layer Meteorol. 2017, 163, 311–326. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, H.; Wei, W.; Wu, B.; Cai, X.; Song, Y. Effects of Turbulence Structure and Urbanization on the Heavy Haze Pollution Process. Atmos Chem. Phys. 2019, 19, 1041–1057. [Google Scholar] [CrossRef]
- Huang, Y.X.; Schmitt, F.G.; Lu, Z.M.; Fougairolles, P.; Gagne, Y.; Liu, Y.L. Second-order structure function in fully developed turbulence. Phys. Rev. E 2010, 82, 026319. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z. A Review on Hilbert-Huang Transform: Method and Its Applications to Geophysical Studies. Rev. Geophys. 2008, 46, RG2006. [Google Scholar] [CrossRef]
- Senroy, N. Inter-Area Oscillations in Power Systems: A Nonlinear and Nonstationary Perspective; Messina, A.R., Ed.; Springer: Boston, MA, USA, 2009; pp. 37–61. [Google Scholar]
- Wu, Z.; Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Yeh, J.; Shieh, J.; Huamg, N. Complementary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data Analysis Method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- De Bruin, H.A.R.; Kohsiek, W.; Van Den Hurk, B.J.J.M. A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water Vapour Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities. Bound.-Layer Meteorol. 1993, 63, 231–257. [Google Scholar] [CrossRef]
- Quan, L.; Hu, F. Relationship between Turbulent Flux and Variance in the Urban Canopy. Meteorol. Atmos. Phys. 2009, 104, 29–36. [Google Scholar] [CrossRef]
- Wood, C.R.; Lacser, A.; Barlow, J.F.; Padhra, A.; Belcher, S.E.; Nemitz, E.; Helfter, C.; Famulari, D.; Grimmond, C.S.B. Turbulent Flow at 190 m Height above London During 2006–2008: A Climatology and the Applicability of Similarity Theory. Bound.-Layer Meteorol. 2010, 137, 77–96. [Google Scholar] [CrossRef]
- Sreenivasan, K.R.; Prasad, R.R.; Meneveau, C.; Ramshankar, R. The Fractal Geometry of Interfaces and the Multifractal Distribution of Dissipation in Fully Turbulent Flows. Pure Appl. Geophys. 1989, 131, 43–60. [Google Scholar] [CrossRef]
- Vassilicos, J.C.; Hunt, J.C.R. Fractal Dimensions ansd Spectra of Interfaces with Application to Turbulence. Proc. Math. Phys. Sci. 1991, 435, 505–534. [Google Scholar] [CrossRef]
- Carbone, F.; Alberti, T.; Sorriso-Valvo, L.; Telloni, D.; Sprovieri, F.; Pirrone, N. Scale-Dependent Turbulent Dynamics and Phase-Space Behavior of the Stable Atmospheric Boundary Layer. Atmosphere 2020, 11, 428. [Google Scholar] [CrossRef]
- Mahrt, L. Characteristics of Submeso Winds in the Stable Boundary Layer. Bound.-Layer Meteorol. 2009, 130, 1–14. [Google Scholar] [CrossRef]
- Mahrt, L. Variability and Maintenance of Turbulence in the Very Stable Boundary Layer. Bound.-Layer Meteorol. 2010, 135, 1–18. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. A Solution for Flux Contamination by Mesoscale Motions with Very Weak Turbulence. Bound.-Layer Meteorol. 2006, 118, 431–447. [Google Scholar] [CrossRef]
Goodness-of-Fit | RMSE in July/December (Unstable) | RMSE in July/December (Stable) |
---|---|---|
3.28/3.46 | 4.08/2.72 | |
2.26/2.54 | 0.72/0.78 | |
1.07/0.83 | 1.06/1.19 | |
0.22/0.21 | 0.22/0.27 | |
0.14/0.14 | 0.14/0.17 | |
0.12/0.10 | 0.11/0.09 | |
0.20/0.19 | 0.19/0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, H.; Fu, Z.; Cai, X.; Song, Y. Analysis of Fractal Properties of Atmospheric Turbulence and the Practical Applications. Fractal Fract. 2024, 8, 483. https://doi.org/10.3390/fractalfract8080483
Liu Z, Zhang H, Fu Z, Cai X, Song Y. Analysis of Fractal Properties of Atmospheric Turbulence and the Practical Applications. Fractal and Fractional. 2024; 8(8):483. https://doi.org/10.3390/fractalfract8080483
Chicago/Turabian StyleLiu, Zihan, Hongsheng Zhang, Zuntao Fu, Xuhui Cai, and Yu Song. 2024. "Analysis of Fractal Properties of Atmospheric Turbulence and the Practical Applications" Fractal and Fractional 8, no. 8: 483. https://doi.org/10.3390/fractalfract8080483
APA StyleLiu, Z., Zhang, H., Fu, Z., Cai, X., & Song, Y. (2024). Analysis of Fractal Properties of Atmospheric Turbulence and the Practical Applications. Fractal and Fractional, 8(8), 483. https://doi.org/10.3390/fractalfract8080483