On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam
Abstract
:1. Introduction
2. Preliminaries
2.1. q-Calculus
2.2. (p; q)-Calculus
- .
- .
- .
- .
2.3. Fixed Point Theory
- (a)
- E is --contraction if
- (b)
- E is -admissible if whenever .
- (c)
- is an endpoint of if .
- (d)
- has an approximate endpoint property if
- (e)
- is -admissible if for every and ,
- (f)
- is an --contraction if
- (1)
- E is -admissible on ;
- (2)
- s.t. ;
- (3)
- For every sequence in with , if for all , then for each .
- (1)
- ;
- (2)
- The continuous function is compact;
- (3)
- is contraction.
- 1.
- is -admissible;
- 2.
- for some and ;
- 3.
- For every sequence in with and for all , there is a subsequence of so that for each .
- 1.
- The upper semi-continuous function is so that and for all ;
- 2.
- is so that for each .
3. On the Generalized -Difference Navier Problem (4)
- For each and , we have
- Some exists s.t. ,
- For every sequence converging to , the inequality
- s.t. and ,
- and there is a non-decreasing function s.t. for all and each ,
4. On the Generalized -Difference Navier Problem (5)
- is bounded and integrable so that is measurable for each ;
- There is so that for each ;
- There is a sequence converging to so that the inequality
- For each and such that
- There is so that and . Here, is non-decreasing and upper semi-continuous;
- is bounded and integrable such that is measurable for each ;
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Accademic Press: New York, NY, USA, 1999. [Google Scholar]
- Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 2021, 13, 264. [Google Scholar] [CrossRef]
- Kattan, D.A.; Hammad, H.A. Existence and stability results for piecewise Caputo-Fabrizio fractional differential equations with mixed delays. Fractal Fract. 2023, 7, 644. [Google Scholar] [CrossRef]
- Rezapour, S.; Ntouyas, S.K.; Iqbal, M.Q.; Hussain, A.; Etemad, S.; Tariboon, J. An analytical survey on the solutions of the generalized double-order φ-integrodifferential equation. J. Funct. Spaces 2021, 2021, 6667757. [Google Scholar] [CrossRef]
- Khan, A.; Shah, K.; Abdeljawad, T.; Alqudah, M.A. Existence of results and computational analysis of a fractional order two strain epidemic model. Res. Phys. 2022, 39, 105649. [Google Scholar] [CrossRef]
- Ayadi, S.; Ege, O.; De la Sen, M. On a coupled system of generalized hybrid pantograph equations involving fractional deformable derivatives. AIMS Math. 2023, 8, 10978–10996. [Google Scholar] [CrossRef]
- Ben Chikh, S.; Amara, A.; Etemad, S.; Rezapour, S. On Hyers-Ulam stability of a multi-order boundary value problems via Riemann-Liouville derivatives and integrals. Adv. Differ. Equ. 2020, 2020, 547. [Google Scholar] [CrossRef]
- Etemad, S.; Matar, M.M.; Ragusa, M.A.; Rezapour, S. Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness. Mathematics 2022, 10, 25. [Google Scholar] [CrossRef]
- Jackson, F.H. On a q-definite integrals. Quart. J. Pure. Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Amer. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Fock, V. Zur Theorie des Wasserstoffatoms. Z. Physik. 1935, 98, 145–154. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef]
- Boutiara, A.; Benbachir, M.; Kaabar, M.K.A.; Martinez, F.; Samei, M.E.; Kaplan, M. Explicit iteration and unbounded solutions for fractional q-difference equations with boundary conditions on an infinite interval. J. Inequal. Appl. 2022, 2022, 29. [Google Scholar] [CrossRef]
- Houas, M.; Samei, M.E. Existence and stability of solutions for linear and nonlinear damping of q-fractional Duffing–Rayleigh problem. Mediterr. J. Math. 2023, 20, 148. [Google Scholar] [CrossRef]
- Rezapour, S.; Imran, A.; Hussain, A.; Martinez, F.; Etemad, S.; Kaabar, M.K.A. Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 2021, 13, 469. [Google Scholar] [CrossRef]
- Wannalookkhee, F.; Nonlaopon, K.; Sarikaya, M.Z.; Budak, H.; Ali, M.A. On some new quantum trapezoid-type inequalities for q-differentiable coordinated convex functions. J. Inequal. Appl. 2023, 2023, 5. [Google Scholar] [CrossRef]
- Alzabut, J.; Houas, M.; Abbas, M.I. Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional q-derivatives. Demonstrat. Math. 2023, 56, 20220205. [Google Scholar] [CrossRef]
- Butt, S.I.; Budak, H.; Nonlaopon, K. New variants of quantum midpoint-type inequalities. Symmetry 2022, 14, 2599. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, 5683–5701. [Google Scholar] [CrossRef]
- Jebreen, H.B.; Mursaleen, M.; Ahasan, M. On the convergence of Lupas (p, q)-Bernstein operators via contraction principle. J. Inequal. Appl. 2019, 2019, 34. [Google Scholar] [CrossRef]
- Mursaleen, M.; Nasiruzzaman, M.; Khan, A.; Ansari, K.J. Some approximation results on Bleimann-Butzer-Hahn operators defined by (p, q)-integers. Filomat 2016, 30, 639–648. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ansari, K.J.; Khan, A. Some approximation results by (p, q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015, 264, 392–402, Erratum in: Appl. Math. Comput. 2015, 269, 744–746. [Google Scholar] [CrossRef]
- Khan, K.; Lobiyal, D.K. Bézier curves based on Lupas (p, q)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 2017, 317, 458–477. [Google Scholar] [CrossRef]
- Khan, A.; Sharma, V. Statistical approximation by (p, q)-analogue of Bernstein-Stancu operators. Azerb. J. Math. 2018, 8, 100–121. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar]
- Cheng, W.T.; Zhang, W.H.; Cai, Q.B. (p, q)-Gamma operators which preserve x2. J. Inequal. Appl. 2019, 2019, 108. [Google Scholar] [CrossRef]
- Milovanovic, G.V.; Gupta, V.; Malik, N. (p, q)-Beta functions and applications in approximation. Bol. Soc. Mat. Mexicana 2018, 24, 219–237. [Google Scholar] [CrossRef]
- Soontharanon, J.; Sitthiwirattham, T. On fractional (p, q)-calculus. Adv. Differ. Equ. 2020, 2020, 35. [Google Scholar] [CrossRef]
- Soontharanon, J.; Sitthiwirattham, T. Existence results of nonlocal Robin boundary value problems for fractional (p, q)-integrodifference equations. Adv. Differ. Equ. 2020, 2020, 342. [Google Scholar] [CrossRef]
- Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Ahmad, B. Nonlocal boundary value problems of nonlinear fractional (p, q)-difference equations. Fractal Fract. 2021, 5, 270. [Google Scholar] [CrossRef]
- Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Ahmad, B. Existence and uniqueness results for fractional (p, q)-difference equations with separated boundary conditions. Mathematics 2022, 10, 767. [Google Scholar] [CrossRef]
- Soontharanon, J.; Sitthiwirattham, T. On sequential fractional Caputo (p, q)-integrodifference equations via three-point fractional Riemann-Liouville (p, q)-difference boundary condition. AIMS Math. 2022, 7, 704–722. [Google Scholar] [CrossRef]
- Luangboon, W.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Budak, H. On generalizations of some integral inequalities for preinvex functions via (p, q)-calculus. J. Inequal. Appl. 2022, 2022, 157. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Ali, M.A.; Budak, H.; Etemad, S.; Rezapour, S. A new version of (p, q)-Hermite-Hadamard’s midpoint and trapezoidal inequalities via special operators in (p, q)-calculus. Bound. Value Probl. 2022, 2022, 84. [Google Scholar] [CrossRef]
- Qin, Z.; Sun, S. On a nonlinear fractional (p, q)-difference Schrödinger equation. J. Appl. Math. Comp. 2022, 68, 1685–1698. [Google Scholar] [CrossRef]
- Boutiara, A.; Alzabut, J.; Ghaderi, M.; Rezapour, S. On a coupled system of fractional (p, q)-differential equation with Lipschitzian matrix in generalized metric space. AIMS Math. 2023, 8, 1566–1591. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Al-Hutami, H.; Ahmad, B. On solvability of fractional (p, q)-difference equations with (p, q)-difference anti-periodic boundary conditions. Mathematics 2022, 10, 4419. [Google Scholar] [CrossRef]
- Rahimi, Z.; Sumelka, W.; Yang, X.J. A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams. Eur. Phys. J. Plus 2017, 132, 479. [Google Scholar] [CrossRef]
- Patnaik, S.; Sidhardh, S.; Semperlotti, F. A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity. Int. J. Solids Struct. 2020, 202, 398–417. [Google Scholar] [CrossRef]
- Drapaca, C.S.; Sivaloganathan, S. A fractional model of continuum mechanics. J. Elast. 2012, 107, 105–123. [Google Scholar] [CrossRef]
- Reiss, E.L.; Callegari, A.J.; Ahluwalia, D.S. Ordinary Differential Equations with Applications; Holt, Rinehart and Winston: New York, NY, USA, 1976. [Google Scholar]
- Aftabizadeh, A.R. Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 1986, 116, 415–426. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, J.; Fu, S. The method of lower and upper solutions for fourth-order two-point boundary value problems. J. Math. Anal. Appl. 1997, 215, 415–422. [Google Scholar]
- Bai, Z.; Ge, W.; Wang, Y. The method of lower and upper solutions for some fourth-order equations. J. Inequal. Pure Appl. Math. 2004, 5, 13–18. [Google Scholar]
- Bachar, I.; Eltayeb, H. Existence and uniqueness results for fractional Navier boundary value problems. Adv. Differ. Equ. 2020, 2020, 609. [Google Scholar] [CrossRef]
- Etemad, S.; Ntouyas, S.K.; Imran, A.; Hussain, A.; Baleanu, D.; Rezapour, S. Application of some special operators on the analysis of a new generalized fractional Navier problem in the context of q-calculus. Adv. Differ. Equ. 2021, 2021, 402. [Google Scholar] [CrossRef]
- Smart, D.R. Fixed Point Theorems; Cambridge University Press: New York, NY, USA, 1980. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points of α-ψ-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, 2013, 24. [Google Scholar] [CrossRef]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 2007, 1, 311–323. [Google Scholar]
- Adams, C.R. The general theory of a class of linear partial q-difference equations. Trans. Amer. Math. Soc. 1924, 26, 283–312. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L. Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 2012, 218, 9682–9689. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
- Amini-Harandi, A. Endpoints of set-valued contractions in metric spaces. Nonlinear Anal. 2010, 72, 132–134. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etemad, S.; Ntouyas, S.K.; Stamova, I.; Tariboon, J. On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam. Fractal Fract. 2024, 8, 236. https://doi.org/10.3390/fractalfract8040236
Etemad S, Ntouyas SK, Stamova I, Tariboon J. On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam. Fractal and Fractional. 2024; 8(4):236. https://doi.org/10.3390/fractalfract8040236
Chicago/Turabian StyleEtemad, Sina, Sotiris K. Ntouyas, Ivanka Stamova, and Jessada Tariboon. 2024. "On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam" Fractal and Fractional 8, no. 4: 236. https://doi.org/10.3390/fractalfract8040236
APA StyleEtemad, S., Ntouyas, S. K., Stamova, I., & Tariboon, J. (2024). On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam. Fractal and Fractional, 8(4), 236. https://doi.org/10.3390/fractalfract8040236